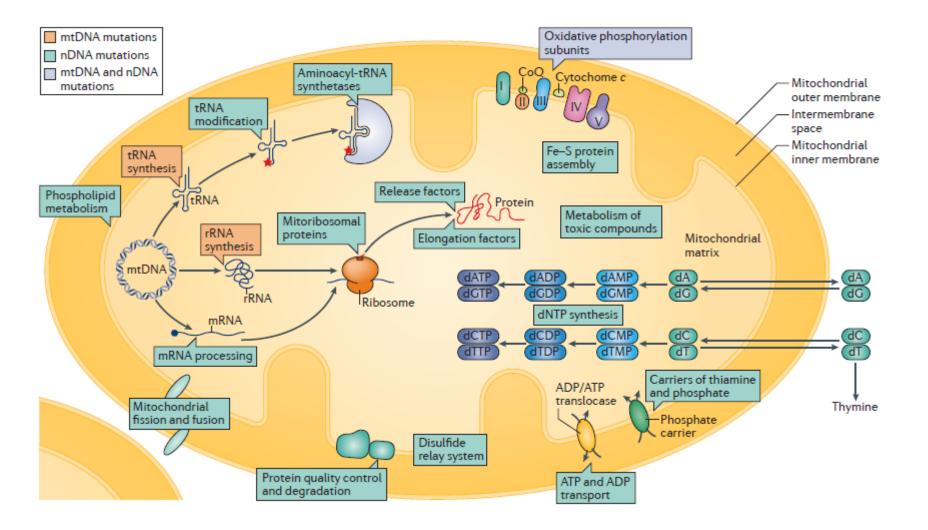
55° Congresso AINPeNC Associazione Italiana Neuropatologia e Neurobiologia Clinica

45° Congresso AIRIC Associazione Italiana Ricerca Invecchiamento Cerebrale

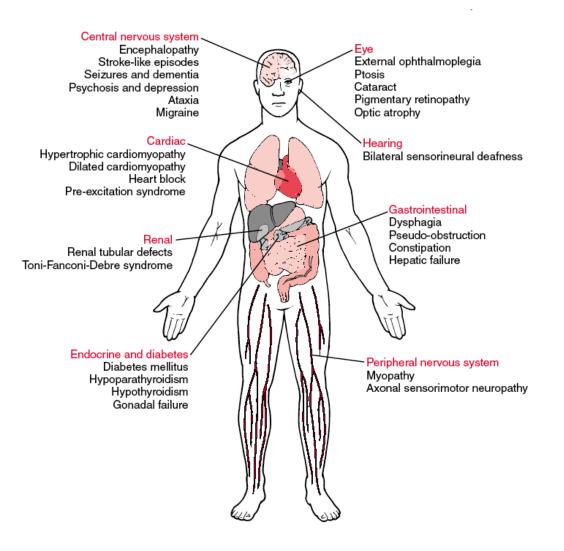

Bologna, 23-25 Maggio 2019

Malattie Mitocondriali

Fenotipi clinici

Michelangelo Mancuso, MD, PhD University of Pisa

GENETIC CLASSIFICATION


Defects of mtDNA

- Mutations in protein synthesis genes
 - tRNA, rRNA, rearrangements
- Mutations in protein-coding genes
 - Multisystemic (LHON, NARP/MILS)
 - Tissue-specific

• Defects of nDNA

- Mutations in respiratory chain subunits
 - Complex I, Complex II
- Mutations in ancillary proteins
 - Complex IV, Complex III
- Defects of intergenomic signaling
 - AR-PEO with multiple Δ -mtDNA
 - mtDNA depletion
- Defects of the lipid milieu
 - Barth syndrome
- Defects of motility/fusion/fission
- Defects of tRNA-synthetases

MITOCHONDRIAL DISORDERS

PRIMARY MITOCHONDRIAL MYOPATHIES

genetically defined disorders leading to defects of oxidative phosphorylation affecting predominantly, but not exclusively, skeletal muscle (see below for methodology). Secondary involvement of mitochondria, frequently observed in multiple neuromuscular diseases (i.e. inclusion body myositis, Duchenne muscular dystrophy, Kennedy disease) are not considered PMM

> Workshop report International Workshop: Outcome measures and clinical trial readiness in primary mitochondrial myopathies in children and adults. Consensus recommendations. Rome, Italy, 16–18 November 2016 Michelangelo Mancuso^{**}, Robert McFarland^{*}, Thomas Klopstock^c, Michio Hirano⁴ on behalf of the consortium on Trial Readiness in Mitochondrial Myopathies¹

¹ Department of Experimental and Clinical Medicine, Neurological Institute, University of Psa, Italy ¹ Wellcome Treat Centre for Miscelcondirial Research, Institute of Genetic Medicine, Department of Physiology and Fuencinal Genomics VEI 382, Newcastle University, Newcastle works on Dire, U.K. ² Priordirich-Baar-Institut an der Neurologischen Kluik und Phillinik, IAU Mitchen, Ziemsenster Ia, 80336 Mitschen, Federal Republic of Germany ³ Department of Neurology, II. Mounto Merrit Menomacular Bearanch Center, Columbia University Medical Center, New York, NY, USA

PMM: clinical presentation

- Fatigue (defined as an overwhelming sense of tiredness, lack of energy and feeling of exhaustion)
- Exercise Intolerance
- Pain/Myalgia
- Weakness
- Wasting
- Dysphagia
- Spasms
- Myoglobinuria, triggered by exercise (cyt b or CoQ10 deficiency)
- Ptosis
- ophtalmoparesis

Italian Network of Mitochondrial Diseases

1800 Patients

	Patients (1330 tot with	Percentage
	full phenotype described)	
Ptosis/ophthalmoparesis	636	47,8
Muscle weakness	488	36,7
Hearing loss	330	24,8
Exercise intolerance	279	21
Optic neuropathy	241	18,1
Muscle wasting	233	17,5
Cerebellar ataxia	198	14,8
Cognitive involvement	189	14,2
Hypotonia	180	13,5
Neuropathy	163	12,2
Swallowing impairment	162	12,1
Epileptic seizures	152	11,4
Muscle pain	152	11,4
Diabetes	121	9
Pyramidal involvement	115	8,6
Respiratory impairment	115	8,6
Cardiomyopathy	106	7,9
Migraine	102	7,6
Retinopathy	92	6,9
Gastroint. dysmotility	69	5,1

PEO

- The commonest phenotype of PMM, observed in about twothirds of all cases of PMM
- Bilateral eyelid ptosis, often the presenting symptom, associated with a compensatory frontalis muscle contraction and, in severe cases, tilting of the head.
- Ptosis is accompanied by a slowly progressive, usually symmetrical limitation of eye movement (ophthalmoplegia) in all directions of gaze
- Diplopia is sometimes reported by the patients. Intrinsic ocular muscles are not involved.

PEO- II

- PEO is often associated with other signs of skeletal muscle involvement, typically slow progressive axial and proximal limb weakness affecting predominantly the hip and shoulder girdle muscles often with muscle wasting.
- Muscle weakness may also cause difficulty swallowing (dysphagia) and respiratory failure.
- Distal muscle weakness may be present but rarely seen early in the disease.
- From a genetic point of view, PEO may be autosomal dominant or recessive (due to nDNA mutations), sporadic (due to single large-scale deletion of mtDNA), or maternally inherited (due to mtDNA mutation).

Available online at www.sciencedirect.com

SciVerse ScienceDirect

Neuromuscular Disorders 22 (2012) S226-S229

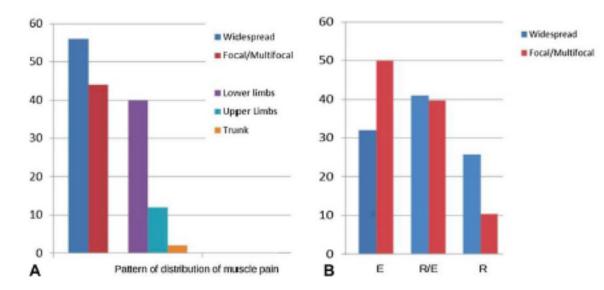
Fatigue and exercise intolerance in mitochondrial diseases. Literature revision and experience of the Italian Network of mitochondrial diseases

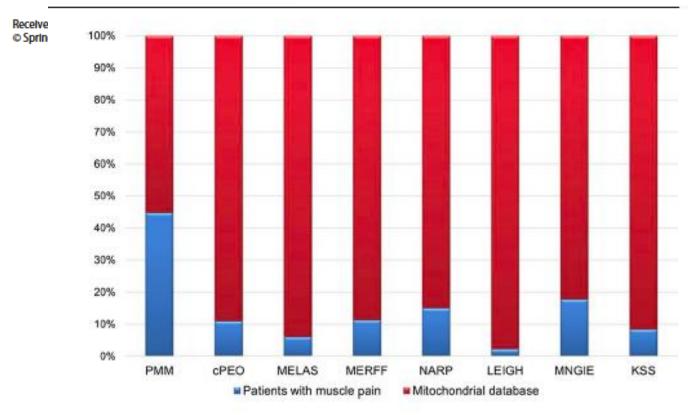
20% Italian cohort

 M. Mancuso^{a,*}, C. Angelini^b, E. Bertini^c, V. Carelli^d, G.P. Comi^m, C. Minetti^f,
 M. Moggio^e, T. Mongini^g, S. Servidei^h, P. Toninⁱ, A. Toscano^j, G. Uziel^k,
 M. Zeviani¹, G. Siciliano^a, The Nation-wide Italian Collaborative Network of Mitochondrial Diseases

Table 1

Genotype-based approach. The patients have been divided in two groups, with and without exercise intolerance. For more details, see text. n.s., not significant difference. LHON: Leber hereditary optic neuropathy.


	Exercise intolerance: No $(n = 878)$	Exercise intolerance: Yes (222)	Р
mtDNA A3243G mutation	62 (7.1%)	33 (14.9%)	<0.0005
mtDNA A8344G mutation	27 (3.1%)	9 (4.1%)	n.s.
mtDNA T8993C	19 (2.2%)	1 (0.5%)	n.s.
mtDNA LHON mutations	98 (11.2%)	1 (0.5%)	< 0.0001
OPA1 mutations	85 (9.7%)	1 (0.5%)	<0.0001
POLG mutations	33 (3.8%)	8 (3.6%)	n.s.


Journal of Neurology https://doi.org/10.1007/s00415-019-09219-x

ORIGINAL COMMUNICATION

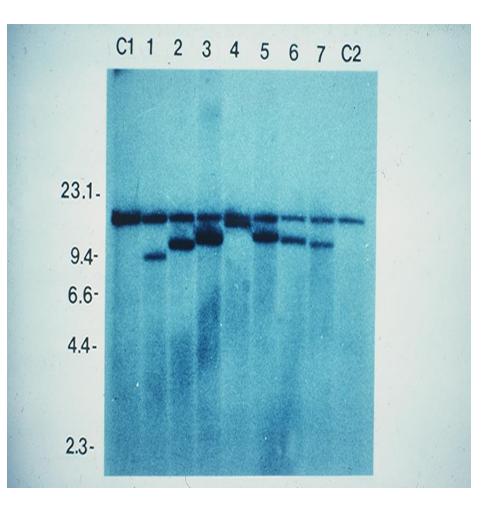
Muscle pain in mitochondrial d network

Massimiliano Filosto¹⁽ⁱ⁾ · Stefano Cotti Piccinel Olimpia Musumeci⁵ · Paola Tonin⁶ · Filippo Mai Liliana Vercelli³ · Anna Rubegni⁷ · Anna Galvag Antonio Toscano⁵ · Alessandro Padovani¹ · Gal

Kearns-Sayre Syndrome

Clinical:	Onset before age 20 Ophthalmoplegia and ptosis Pigmentary retinopathy Heart conduction block Cerebellar ataxia Hearing loss Diabetes
Biochemistry:	Lactic acidosis Respiratory chain deficiency CSF protein >100 mg/dl
Morphology:	Ragged-red fibers (COX-negative)
Genetics:	Sporadic large-scale mtDNA deletions Most common mutation deletes 4,977 bp

• KSS


mtDNA single deletion

• CPEO

Ptosis Ophthalmoplegia Proximal weakness

Pearson syndrome

Sideroblastic anemia Exocrine pancreas dysfunction

J Neurol DOI 10.1007/s00415-015-7710-y

ORIGINAL COMMUNICATION

Redefining phenotypes associated with mitochondrial DNA single deletion

Michelangelo Mancuso¹ · Daniele Orsucci¹ · Corrado Angelini² · Enrico Bertini³ · Valerio Carelli⁴ · Giacomo Pietro Comi⁵ · Maria Alice Donati⁶ · Antonio Federico⁷ · Carlo Minetti⁸ · Maurizio Moggio⁹ · Tiziana Mongini¹⁰ · Filippo Maria Santorelli¹¹ · Serenella Servidei¹² · Paola Tonin¹³ · Antonio Toscano¹⁴ · Claudio Bruno⁸ · Luca Bello² · Elena Caldarazzo Ienco¹ · Elena Cardaioli⁷ · Michela Catteruccia³ · Paola Da Pozzo⁷ · Massimiliano Filosto¹⁷ · Costanza Lamperti¹⁶ · Isabella Moroni¹⁵ · Olimpia Musumeci¹⁴ · Elena Pegoraro² · Dario Ronchi⁵ · Donato Sauchelli¹² · Mauro Scarpelli¹³ · Monica Sciacco⁹ · Maria Lucia Valentino⁴ · Liliana Vercelli¹⁰ ·

RESULTS: Kearns-Sayre syndrome (KSS)

Progressive external ophthalmoplegia plus:

- pigmentary retinopathy
- onset before age 20
 Plus at least one of.
- cerebellar ataxia
- cardiac conduction block
- CSF protein > 0.1 g/L

With these criteria: 15 subjects with KSS (6.6%) M/F 0.88, age at onset 9.4 \pm 4.8 years, last control 29.4 \pm 18.0 years, died 2/15 (13.3%)

Neuromuscular Disorders 22 (2012)

	Onset (22.6 \pm 14.6 years)	Last evaluation $(41.3 \pm 18.8 \text{ years})$
Eyelid ptosis	190 (83.3 %)	210 (92.1 %)
Ophthalmoparesis	95 (41.7 %)	192 (84.2 %)
Muscle weakness	29 (12.7 %)	106 (46.5 %)
Exercise intolerance	16 (7.0 %)	45 (19.7 %)
Hearing loss	16 (7.0 %)	42 (18.4 %)
Muscle wasting	5 (2.2 %)	41 (18.0 %)
Swallowing impairment	12 (5.3 %)	34 (14.9 %)
Increased CK	5 (2.2 %)	34 (14.9 %)
Ataxia	11 (4.8 %)	28 (12.3 %)
Retinopathy	12 (5.3 %)	24 (10.5 %)
Failure to thrive/short stature	11 (4.8 %)	22 (9.6 %)
Diabetes mellitus	2 (0.9 %)	20 (8.8 %)
Hypotonia	3 (1.3 %)	18 (7.9 %)
Muscle pain	2 (0.9 %)	13 (5.7 %)
Cardiac conduction defects	3 (1.3 %)	12 (5.3 %)
Increased liver enzymes	1 (0.4 %)	12 (5.3 %)
Anemia	6 (2.6 %)	11 (4.8 %)
Respiratory impairment	2 (0.9 %)	11 (4.8 %)
Neuropathy	3 (1.3 %)	10 (4.4 %)
Migraine	3 (1.3 %)	10 (4.4 %)
Cognitive involvement	4 (1.8 %)	8 (3.5 %)
Tremor	2 (0.9 %)	7 (3.1 %)
Psychiatric involvement	-	7 (3.1 %)
Cardiomyopathy	-	6 (2.6 %)
Hypothyroidism	_	6 (2.6 %)

Table 1 Clinical features of our patients with mitochondrial DN. single deletion (N = 228)

Among the rare clinical features (1-2.5 %) were: optic neuropathy vomiting (2.2 %); pyramidal signs, cataract, pancytopenia, kidne involvement, gastrointestinal dysmotility (1.8 %); myoglobinuria microcephaly, consciousness disturbance and generalized seizure (1.3 %) Table 6 New criteria defining KSS spectrum and PEO in patients with single deletion

KSS spectrum

Ptosis and/or ophthalmoparesis due to an mtDNA single largescale deletion and at least one of the following features

Retinopathy

Ataxia

Cardiac conduction defects

Hearing loss

Failure to thrive/short stature

Cognitive involvement

Tremor

Cardiomyopathy

PEO

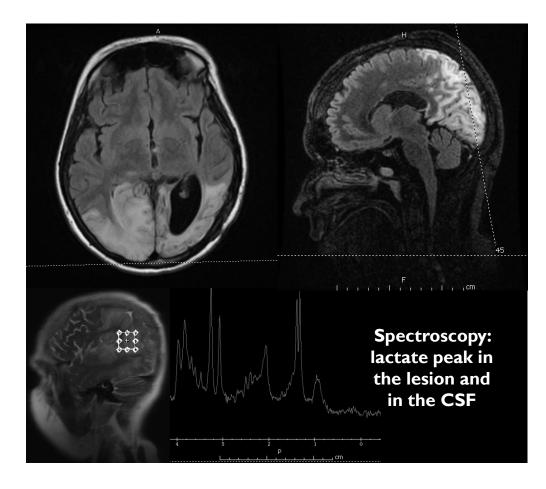
Ptosis and/or ophthalmoparesis due to a mtDNA single large-scale deletion not fulfilling the new "KSS spectrum" criteria or criteria for Pearson syndrome With the new clinical definition, we were able to classify almost all (97%) our single-deletion patients:

- 62.7% PEO (141/22), vs 54.6 NMD 2012
- 31.6% KSS (71/225), vs 6.6 NMD 2012
- 2.7% Pearson (6/225), NMD 2.7

"New" KSS: multisystem involvement, more severe muscular impairment (weakness and wasting), MRI frequently abnormal (white matter, brainstem, basal nuclei), mean age at onset 21 years, worst prognosis.

"New" single-deletion PEO: prominent myopathic involvement, MRI frequently normal, mean age at onset 27 years, better prognosis.

MELAS

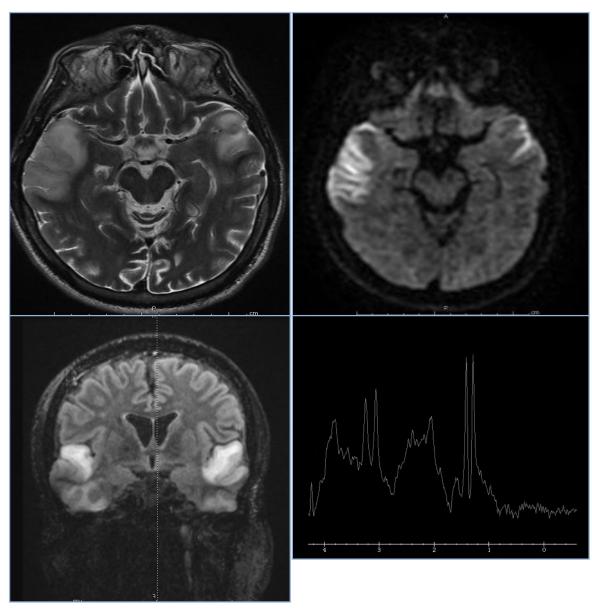

MITOCHONDRIAL ENCEPHALOPATHY, LACTIC ACIDOSIS, AND **STROKE-LIKE** EPISODES

- Acute episodes can present at any age with neurological and/or psychiatric symptoms typically associated with cortical/subcortical MRI changes and EEG abnormalities.
- Stroke-like: **metabolic** stroke driven by SEIZURE activity !
- Recurrent stroke-like episodes: mostly posterior lesions
- Mutation m.3243A>G tRNA Leu gene but also other mt mutations and POLG

MELAS clinical features

Stroke-like episodes	100%	
Focal or generalized seizures	85-96%	
Migraine-like headaches	77-92%	
• Dementia	65-90%	
 Mitochondrial myopathy 	87-89%	
Short stature	55-95%	
Hypertrophic cardiomyopathy	7-18%	
• PEO	13%	
Diabetes	21%	
Hearing loss	27-75%	
Family history consistent	20-86%	
Lactic acidosis	94-97%	
	Thambisetty 2002	

Age 20: Migraine, cortical blindness and status epilepticus partial


m.15092G>A cyt b p.G116S

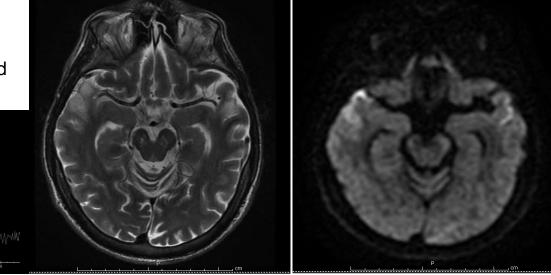
MELAS: stroke-like episodes

Atipical case

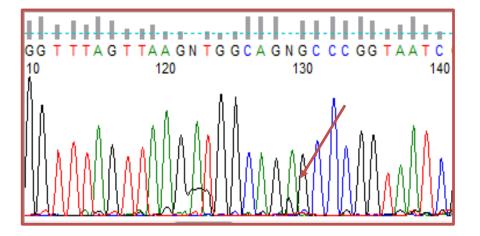
45 years

ER: episodes of confusion and headache in last 3 weeks, two generalised seizures followed by coma

family history: negative for neuromuscular or neurodegenerative disorders Medical history: hearing loss

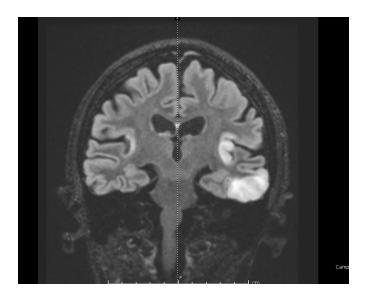

Brain MRI showed temporal lobes T2 hyperintensity with diffusion restriction and contrast uptake and bilateral temporal lobes T1 hyperintensity. Proton spectroscopy showed a lactate peak with reduction of N-Acetyl-Aspartate.

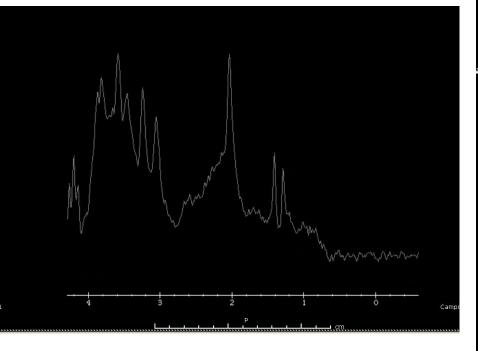
> **CSF** presented increased proteins, glucose and **lactate** but not white cells. Increased **lactate** was also present in serum.

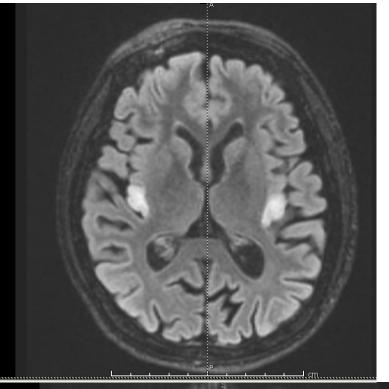

LEV, BDZ carnitine and 600 mgs of coenzyme Q10 NO ARGININE!!!

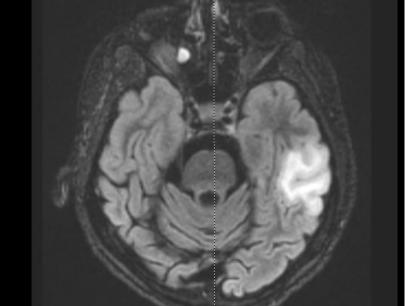
Rapid clinical improvement (GCS 13) and regression of the lactic acidosis

A one-month later brain MRI showed regression of cerebral edema and marked lactate


Genetic testing showed the m.3243A> G mtDNA mutation in urine




Case II

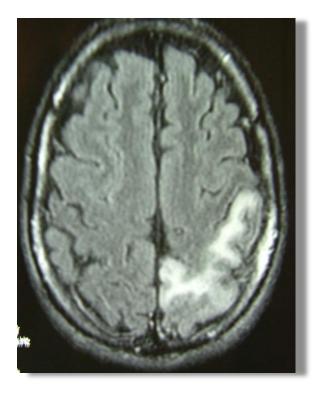

A 41-year-old woman –teacher- complained of subacute afasia, followed by one focal motor seizure

Clinical and family history both negative

Case II

m.3243 in urine Tp: I-arg, coq10, carnitene, riboflavine and delorazepam, aloperidol, cbz

Four months after..


 Acute negative symptoms. I ADL, hypersonnia, negative symptometer returned depressed mood, psychometer returned refuse of food and liquid, bedridden

- Diagnosis: catatonia
- Tp: aloperidol, BDZ (lorazepam, delorazepam, diazepam,), promazine

Case III

- 48-yrs
- Acute aphasia and partial motor seizures
- Mild eyelid ptosis
- Previous medical history negative

m.3243 in urine Tp: l-arg, coq10, LEV, cbz

One year after....

Acute visual hallucination

- •ER-> ophtalmologist (sic) -> discharged at home
- •Few days after also confusion.....

EEG POSTERIOR STATUS EPILEPTICUS

take home message

- Visual hallucination very typical but: WHO KNOWS??
- Stroke like episode driven by SEIZURE activity
 -> potentially treatable??

MANAGEMENT

There is no specific consensus approach for treating individuals with MELAS syndrome.

All patients suspected to be suffering a stroke-like episode due to underlying mitochondrial disease should be discussed or referred to a mitochondrial disease specialist in the acute setting.

Monitoring for the development of arrhythmia

Gastroparesis and small bowel intestinal pseudo-obstruction

MERRF (myoclonic epilepsy with RRF)

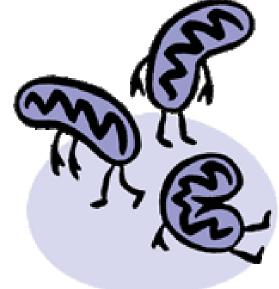
Clinical: Onset in childhood Myoclonus Epilepsy Ataxia Neuropathy Multiple lipomas

Biochemistry:Lactic acidosis Respiratory chain deficiency

Morphology: Ragged-red fibers (COX-negative)

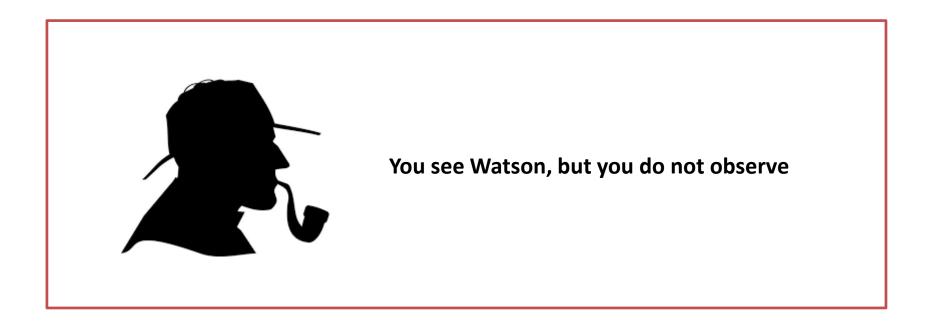
Genetics: Maternally-inherited mtDNA point mutations Most common mutation in tRNA^{Lys} at nt-8344

Neurology® 2013;80:1-6


Table e-2. Clinical features of the 8344A>G carriers.

^{09y®} 2013		Our cohort (n = 39)	Literature revision (n = 282)	Total ($n = 39 + 282 = 321$)
^{logy®} 2013;80:1-6	Muscle weakness	20 (51.3%)	118 (41.8%)	138 (43.0%)
	Increased CK	15 (38.5%)	30 (10.6%)	45 (14.0%)
	Exercise intolerance	15 (38.5%)	40 (14.2%)	55 (17.1%)
	Seizures	12 (30.8%)	94 (33.3%)	106 (33.0%)
	Hearing loss	12 (30.8%)	87 (30.9%)	99 (30.8%)
	Multiple lipomatosis	11 (28.2%)	50 (17.7%)	61 (18.9%)
	Ptosis/ophthalmoparesis	10 (25.6%)	19 (6.7%)	29 (9.0%)
	Ataxia	8 (20.5%)	129 (45.7%)	137 (42.7%)
	Myoclonus	8 (20.5%)	134 (47.5%)	142 (44.2%)
	Muscle wasting	7 (17.9%)	17 (6.0%)	24 (7.5%)
	Muscle pain	6 (15.4%)	13 (4.6%)	19 (5.9%)
	Arrhytmia	6 (15.4%)	7 (2.5%)	13 (4.0%)
	Neuropathy	5(12.8%)	52 (18.4%)	57 (17.8%)
	Cardiomyopathy	4 (10.3%)	20 (7.1%)	24 (7.5%)
	Diabetes	4 (10.3%)	16 (5.7%)	20 (6.2%)
	Cognitive involvement	3 (7.7%)	64 (22.7%)	67 (20.9%)
	Migraine	3 (7.7%)	14 (5.0%)	17 (5.3%)
	Swallowing impairment	2 (5.1%)	8 (2.8%)	10 (3.1%)
	Hypothyroidism	2 (5.1%)	2 (0.7%)	4 (1.2%)

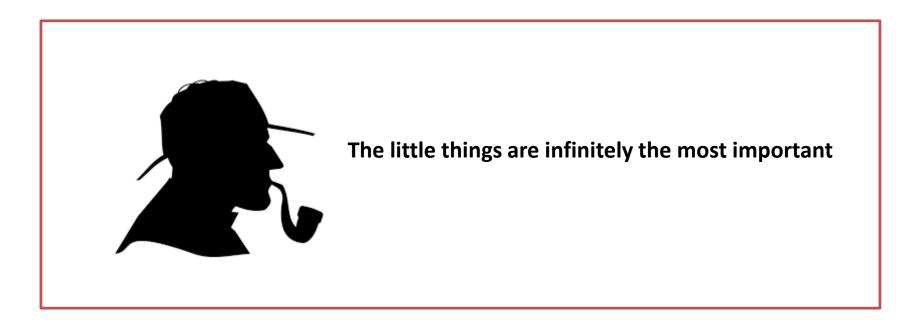
THE MITOCHONDRIAL DISORDER NOT TO MISS: WHICH ARE THE RED FLAGS?


Neurologist in trouble..

- 100s of different mtDNA-related diseases
- 100s of different nDNA-related diseases
- Even in individuals with the same mutation, there are different symptoms
- Change over time
- Challenging to diagnose
- Challenging to treat

Diagnostic approach

The diagnostic process **is no different from that employed for other diseases** and includes patient and family history, physical and neurologic examination, routine and special laboratory tests, exercise physiology, muscle biopsy for morphology and biochemistry, and molecular genetic screening


Diagnosis: assessing involvement

- Brain MRI
- EEG
- Sleep Study
- PFTs
- Echocardiogram
- EKG
- Abdominal Ultrasound
- Swallow Evaluation
- Nutrition Assessment
- Developmental Assessment
- Vision Test
- Ophthalmologic Examination
- Hearing Test

- Labs:
 - Liver Function Tests
 - Fasting Serum Glucose
 - Ammonia
 - СК
 - Amino Acids (alanine, citrulline..)
 - Lactic Acid
 - Free/Total Carnitine
 - Organic aciduria
 - Blood anemia...

Family history

<u>A family history must be taken meticulously</u>, with special attention to minimal and apparently unspecific signs in the maternal lineage, including short stature, diabetes, migraine, hearing loss, exercise intolerance and psychiatric disorders (depression, BP, autism, schizophrenia)

Clinical symptoms and signs

Seizures:

Acute de novo onset status epilepticus Focal/ multi-focal myoclonus Triggered by physiological decompensation Well-controlled inter-ictal periods Exacerbated by sodium valproate

Eye manifestations:

Ptosis Asymmetric onset Frontalis overactivity with preserved orbicularis oculi strength Slow progression, little diurnal variation Progressive external ophthalmoplegia Retinal pigmentary changes Perimacular in distribution vision not affected in general

Diabetes:

Occur in the young and non-overweight Less liable to diabetic retinopathy/ neuropathy

Myopathy:

Symmetrical proximal involvement Can have significant myalgia

CNS involvement:

Young-onset focal neurological deficit, typically associated with a clinical prodrome, focal seizures/ myoclonus, status epilepticus Grey-matter affected that does not follow vascular territory and potentially reversible Basal ganglia calcification Elevated CSF lactate

Hearing loss:

IND

Asymmetric, young-onset sensorineural hearing loss History of partial recovery at some point

Gastrointestinal dysmotility:

Severe constipation, can fluctuate with diarrhoea Intermittent presentations with pseudo-obstruction

Neuropathy: Subclinical involvement

Axonal or demyelinating or a sensory ganglionopathy

As a general hint, **the apparently unrelated involvement of two or more tissues** should suggest the possibility of mitochondrial disease, including the cases where the family history is unremarkable

LABORATORY TESTS

- Labs:
 - LFTs
 - СРК
 - Fasting Serum Glucose
 - Ammonia
 - Amino Acids
 - Lactic Acid
 - Free/Total Carnitine
 - UOA
 - Sideroblastic Anemia
 - FGF21, GDF15

When hypothesize a mitochondrial disorder?

Mitochondrial disorders in neurology are either underdiagnosed : "what is this bizarre syndrome?" or overdiagnosed: "this syndrome is so bizarre that it must be mitochondrial"

It is a mistake to confound strangeness with mystery. The most commonplace crime is often the most mysterious because it presents no new or special features from which deductions may be drawn. The strange details, far from making the case more difficult, have really had the effect of making it less so."

Details Mild signs-symptoms Multidisciplinary approach Observe (ie lipomas)! Associations (i.e.) -NSHL&DM -myoclonus&ataxia -PEO&Parkinsonism -liver f. &encephalopathy

Deep inside Lab tests (lactate,aa..) Radiology

BEYOND NEUROLOGY

-cardiopathy -liver imp.

-diabetes

-lactic acidosis

SNC

- -seizures & myoclonus
- -ataxia
- -cognitive imp.
- -stroke like ep.
- -mov. Disorders
- -optic atrophy
- -NSHL
- -psycomotor imp.

NEUROMUSCULAR

-PEO
-Exercise intolerance
-Weakness, fatigue, ex.int.
-wasting
-dysphagia
-numbness
-paresthesia

