55° Congresso AINPeNC Associazione Italiana Neuropatologia e Neurobiologia Clinica 45° Congresso AIRIC Associazione Italiana Ricerca Invecchiamento Cerebrale

Bologna, 23-25 Maggio 2019

Meningiomi: aspetti immunofenotipici e molecolari

P.L. Poliani PATHOLOGY UNIT – Department of Molecular and Translational Medicine, UNIBS

UNIVERSITÀ DEGLI STUDI DI BRESCIA

Neuro-Oncology

20(S4), 1–86, 2018 | doi:10.1093/neuonc/noy131

CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011–2015

Quinn T. Ostrom, Ph.D, M.P.H.,* Haley Gittleman, M.S.,* Gabrielle Truitt, B.S., Alexander Boscia, B.S., Carol Kruchko, B.A., and Jill S. Barnholtz-Sloan, Ph.D.

Meningiomas: among the most common intracranial tumours, with an estimated incidence of 7.86 cases per 100,000 people per year

WHO Ed. 2016

CHAPTER 10

Meningiomas

Meningioma Meningothelial meningioma Fibrous meningioma Transitional meningioma Psammomatous meningioma Angiomatous meningioma Microcystic meningioma Secretory meningioma Lymphoplasmacyte-rich meningioma Metaplastic meningioma Chordoid meningioma Clear cell meningioma Atypical meningioma Papillary meningioma Rhabdoid meningioma Anaplastic (malignant) meningioma

fibrous

High morphologic heterogeneity!

- Clinical behaviour?
- Molecular heterogeneity?
- Responsiveness to treatment?

Meningiomas with low risk of recurrence and aggressive growth (WHO grade I)

Meningothelial meningioma Fibrous (fibroblastic) meningioma Transitional (mixed) meningioma Psammomatous meningioma Angiomatous meningioma Microcystic meningioma Secretory meningioma Lymphoplasmacyte-rich meningioma Metaplastic meningioma

Meningiomas with greater likelihood of recurrence and/or aggressive behaviour

(WHO grade II) Atypical meningioma Clear-cell meningioma Chordoid meningioma

Meningiomas with greater likelihood of recurrence and/or aggressive behaviour (WHO grade III) Anaplastic (malignant) meningioma Rhabdoid meningioma Papillary meningioma Meningiomas of any type or grade with high proliferation index and/or brain invasion

The introduction of improved diagnostic criteria by the 2007 WHO classification (not changed in WHO 2016) resulted in an increased recognition of grade II meningiomas, including recognition of brain-invasive tumours, and identification of a larger proportion of patients who have a high risk of tumour recurrence and need additional therapies WHO I: ~80% "various histotypes" WHO II: ~15–20% atypical "Chordoid" and "clear cell" WHO III: ~1–2% anaplastic/malignant "Papillary" e "rhabdoid"

- Surgery
- Wait & See
- Radiotherapy
- CT and/or RT

- Histological variant other than clear-cell, chordoid, papillary, or rhabdoid
- Lacks criteria of atypical and anaplastic meningioma

Atypical meningioma (WHO grade II) (any of three criteria)

- Mitotic index ≥ four mitoses/ten high-power fields (HPF)
- At least three of five parameters:
 - Increased cellularity
 - High nuclear/cytoplasmatic ratio (small cells)
 - Prominent nucleoli
 - Uninterrupted patternless or sheet-like growth
 - Foci of spontaneous necrosis (ie, not induced by embolisation or radiation)
- 🔹 Brain invasion 🗧

>4

> 20

Anaplastic (malignant) meningioma (WHO grade III) (either of two criteria)

- Mitotic index ≥20 mitoses/10 HPF
- Anaplasia (sarcoma, carcinoma, or melanoma-like histology)

High prolifera

Neuro-Oncology

19(10), 1298-1307, 2017 | doi:10.1093/neuonc/nox071 | Advance Access

Benjamin Brokinkel, Katharina Hess, and Christian Mawrin

Department of Neurosurgery, University Hospital Münster, Münster, Germany (B.B.); Institute of Neuropathology, University Hospital Münster, Münster, Germany (K.H.); Institute of Neuropathology, Otto-von-Guericke University, Magdeburg, Germany (C.M.)

Brain invasion in meningiomas—clinical considerations and impact of neuropathological evaluation: a systematic review

Fig. 4 **Risk of tumor recurrence** comparing brain invasive and non-invasive meningiomas. In most studies, brain invasion was significantly (black graphs) correlated with an increased hazard ratio of tumor recurrence in uni- (dashed lines) or multivariate (solid lines) analyses. However, no statistically significant correlation between tumor recurrence and brain invasion was found in some studies (gray graphs). For this figure, studies without information about hazard ratios and confidence intervals were excluded.

Fig. 3 Illustrative cranial MRI of a patient with a brain invasive meningioma. (A) Preoperative, axial post-gadolinium (GD) T1-weighted MRI revealing a large right frontal, contrast-enhancing meningioma. (B) Axial T2-weighted image shows the distinct peritumoral edema. In neuropathological analyses, the tumor showed finger-like invasion into the adjacent brain tissue (C; hematoxylin and eosin staining); *meningioma; **peritumoral brain edema; BT, brain tissue.

of brain tumors since 1993.⁴³ With the release of the 2016 edition, this heterogeneity gained highest clinical relevance, as microscopic evidence of brain invasion, even in the absence of further histopathological criteria of atypia, is now sufficient to impact tumor grading and therefore indirectly adjuvant therapy as well as inclusion in clinical trials.^{1,46}

- Neurosurgical techniques and incomplete resection can impair neuropathological analyses and therefore grading.
- Neuropathological evaluation of brain invasion is not standardized and methods vary among published studies.
- Preoperative, imaging-based as well as intraoperative macroscopic assessment of brain invasion is not reliable.
- Microscopic evidence of brain invasion is correlated with tumor progression in most series.
- Although frequently associated with other histopathological criteria of atypia, clinical risk factors correlated with brain invasion are sparse.

Panel 1: WHO 2016 grading for meningiomas¹

Grade I

- Low mitotic rate, less than four per ten high-power fields (HPFs)
- Absence of brain invasion
- Nine subtypes

Grade II (atypical)

- Mitotic rate four to 19 per HPF
- Or brain invasion
- Or three of five specific histologies: spontaneous necrosis, sheeting, prominent nucleoli, high cellularity, and small cells

Grade III (anaplastic)

- Mitotic rate more than 20 per HPF
- Or specific histologies: papillary or rhabdoid meningioma

EANO guidelines for the diagnosis and treatment of meningiomas

Roland Goldbrunner, Giuseppe Minniti, Matthias Preusser, Michael D Jenkinson, Kita Sallabanda, Emmanuel Houdart, Andreas von Deimling, Pantelis Stavrinou, Florence Lefranc, Morten Lund-Johansen, Elizabeth Cohen-Jonathan Moyal, Dieta Brandsma, Roger Henriksson, Riccardo Soffietti, Michael Weller

www.thelancet.com/oncology Vol 17 September 2016

Meningiomas with similar histological features and same grade may have a different biological behaviour! Why?

The inclusion of the newly identified recurrent molecular alterations in the diagnostic assessment might further improve accuracy in the identification of meningioma patients who need close surveillance and more-aggressive treatment

In the last few years, advances in molecular characterization of meningioma have enabled identification of genetic alterations that are responsible for an increased likelihood of tumour recurrence and could represent promising treatment targets. These information are now included within the last WHO Ed. 2016.

Recurring genetic alterations with DIAGNOSTIC and PROGNOSTIC value

Histological subtype	WHO grade (2016 criteria)	Gene mutations
Meningothelial	I	TRAF7, AKT1, POLR2A, PIK3CA
Fibrous (fibroblastic)	I.	NF2

NF2 mutated (somatic or germline) and NF2 non-mutated (somatic !?) Meningiomas

	Lymphoptasmacyte-rich	1	-
	Metaplastic	T	-
	Chordoid		
(Clear cell	Ш	SMARCE1
	Atypical	Ш	NF2, TRAF7, AKT1
	Papillary	<u>III</u>	_
(Rhabdoid	Ш	BAP1
	Anaplastic (malignant)	III	NF2

WHO Classification of Tumours of the Central Nervous System

David K. Louis. Windo Olgaki, Olmar D. Wander, Weikster K. Carwan, David H. Ellinon, Exercision Figuralia Branger, Arth Forty, Coddy Hallardierger, Antimax von Daviding

WHO Ed. 2016

SYNDROMES

Neurofibromatosis II Nevoid basal cell carcinoma (Gorlin) Rubinstein-Taybi Syndrome or broad thumb-hallux syndrome von Hippel-Lindau Cowden Li Fraumeni

NF2 PTCH	22q12
CREBBP	16p13.3
VHL	3p25
PTEN	10q23.3
TP53	17q (between
	exon 5 and 9)

GENES

CHROMOSOME

Neurofibromatosis type 2 (NF2)

- Vestibular schwannoma (bilateral) are pathognomonic
- develop bilateral tumors before 30 years of age
- ≈ 60% of pts. develop schwannomas from dorsal root
- Meningiomas found in ≈ 50% of pts. with NF2
- NF2-related meningiomas usually have a higher mitotic index and a more aggressive behavior than the sporadic
- increased risk of developing other brain tumors, such as
 ependymomas and astrocytomas (rare)

monosomy of chromosome 22 is the most common chromosomal abnormality in meningiomas, occurring in 50–70% of sporadic cases

- NF2 gene (chr. 22q12; over 110kb)
- merlin (or schwannomin)
- > mutations are truncation mutations (nonfunctional protein, more severe phenotype
- deletions (also large) or missense mutations have a milder form of NF2

- often fibroblastic

- 37 y/o; family history of NF2+ (mother and brother)
- Bilateral acoustic (VIII) schwannomas
- Meningioma dx (MRI) in FU: stable since 2009
- Slow progression from 2010.
- In 2015 rapid progression of the lesion with edema and suspect of brain invasion.
- Progression of the bilateral schwannomas.

- April 28th, 2015: surgery with radical resection
- June and July 2015: Post-surgery fractionated RT (60 Gy in 30 fractions of 2 Gy/die)

RMN October 2015:

Not recurrence or residual disease

New lesion (meningioma) of about 1cm within the left falx

Progression of Scwhannomas with brainstem compression

Courtesy of Dr. L. Triggiani; Radiotherapy, Brescia

Atypical Grade II Meningioma

October 2016:

- MRI, local recurrence
- Other two meningiomas
- Further acustic Schwannomas progression

NF2 mutated (somatic) Meningiomas: about 50%

	AKT1	KLF4	TRAF7	NF2	SMO	TERT
Meningothelial meningioma WHO grade I	13%		8%	22%	16%	
Transitional meningioma WHO grade I	14%		5%	33%		
Fibroblastic meningioma WHO grade I				70%		
Psammomatous meningioma WHO grade I				60%		
Secretory meningioma WHO grade I		100%	100%			
Metaplastic meningioma WHO grade I	25%			20%		
Microcystic meningioma WHO grade I						
Angiomatous meningioma WHO grade I	4%			10%		
Atypical meningioma WHO grade II	4%		4%	70%		6%
Chordoid meningioma WHO grade II						
Clear cell meningioma WHO grade II				50%		
Anaplastic meningioma WHO grade III				70%		20%
				\backslash		

- Why Merlin drives meningiomagenesis remain poorly understood
- Merlin inhibits cell proliferation through contact-dependent regulation of various signaling pathways, including Hippo, Patched and Notch pathways.
- Activation of the mTOR pathway during meningiomagenesis

somatic mutations in the INI1 (SMARCB1/hSNF5) gene

- Alterations in *SMARCB1*, located on chromosome 22q11.2 in close proximity to NF2, have also been reported in meningiomas and schwannomas
- SMARCB1 is part of SWI/SNF complex participating in transcriptional regulation
- <u>Co-occurrence of recurrent SMARCB1 mutations in NF2-mutated meningiomas is frequent</u>
- Additional SMARCB1 alterations might accelerate the growth of meningioma

INI1 mutations in meningiomas at a potential hotspot in exon 9

U Schmitz¹, W Mueller¹, M Weber¹, N Sévenet², O Delattre² and A von Deimling¹

¹Department of Neuropathology, Charité, Humboldt University, 13353 Berlin, Germany, ²Laboratory of Molecular Cancer Pathology, Institut Curie, 75248 Paris, France

British Journal of Cancer (2001) 84(2), 199-201

Germline *SMARCB1* mutation predisposes to multiple meningiomas and schwannomas with preferential location of cranial meningiomas at the falx cerebri

Pepijn van den Munckhof • Imke Christiaans • Susan B. Kenter • Frank Baas • Theo J. M. Hulsebos Neurogenetics (2012) 13:1-7

Germline Mutation of INI1/SMARCB1 in Familial Schwannomatosis The American Journal of Huma

The American Journal of Human Genetics Volume 80 April 2007

Theo J. M. Hulsebos, Astrid S. Plomp, Ruud A. Wolterman, Els C. Robanus-Maandag, Frank Baas, and Pieter Wesseling

- **SMARCB1** is mutated in 50% of familial schwannomatosis (autosomal dominant with incomplete penetrance), but less than 10% of the sporadic cases
- SMARCB1^{mut} schwannomatosis lack NF2 germline mutation, but virtually all SMARCB1-schwannomatosisrelated schwannomas have somatic NF2 mutations
- The relation between these two genes in the context of schwanomma development suggests a possible four-hits, three-steps mechanism of SMARCB1 and NF2 inactivation

Genomic Analysis of Non-*NF2* Meningiomas Reveals Mutations in *TRAF7*, *KLF4*, *AKT1*, and *SM0*

SCIENCE VOL 339 1 MARCH 2013

Victoria E. Clark,¹ E. Zeynep Erson-Omay,¹ Akdes Serin,¹ Jun Yin,² Justin Cotney,² Koray Özduman,³ Timuçin Avşar,⁴ Jie Li,⁵ Phillip B. Murray,¹ Octavian Henegariu,¹ Saliha Yilmaz,¹ Jennifer Moliterno Günel,⁶ Geneive Carrión-Grant,¹ Baran Yılmaz,⁷ Conor Grady,¹ Bahattin Tanrıkulu,⁷ Mehmet Bakırcıoğlu,¹ Hande Kaymakçalan,⁸ Ahmet Okay Caglayan,¹ Leman Sencar,¹ Emre Ceyhun,¹ A. Fatih Atik,⁷ Yaşar Bayri,⁷ Hanwen Bai,¹ Luis E. Kolb,¹ Ryan M. Hebert,¹ S. Bulent Omay,¹ Ketu Mishra-Gorur,¹ Murim Choi,² John D. Overton,⁹ Eric C. Holland,¹⁰ Shrikant Mane,^{2,9} Matthew W. State,¹¹ Kaya Bilgüvar,¹ Joachim M. Baehring,¹² Philip H. Gutin,⁶ Joseph M. Piepmeier,¹³ Alexander Vortmeyer,⁵ Cameron W. Brennan,¹⁴ M. Necmettin Pamir,³ Türker Kılıç,¹⁵ Richard P. Lifton,^{2,16} James P. Noonan,^{2,17} Katsuhito Yasuno,¹ Murat Günel^{1,18}*

	AKT1	KLF4	TRAF7	NF2	SMO	TERT
Meningothelial meningioma WHO grade I	13%		8%	22%	16%	
Transitional meningioma WHO grade I	14%		5%	33%		
Fibroblastic meningioma WHO grade I				70%		
Psammomatous meningioma WHO grade I				60%		
Secretory meningioma WHO grade I		100%	100%			
Metaplastic meningioma WHO grade I	25%			20%		
Microcystic meningioma WHO grade I						
Angiomatous meningioma WHO grade I	4%			10%		
Atypical meningioma WHO grade II	4%		4%	70%		6%
Chordoid meningioma WHO grade II						
Clear cell meningioma WHO grade II				50%		
Anaplastic meningioma WHO grade III				70%		20%

AKT1 gene

	AKT1
Meningothelial meningioma WHO grade I	13%
Transitional meningioma WHO grade I	14%
Fibroblastic meningioma WHO grade I	
Psammomatous meningioma WHO grade I	**
Secretory meningioma WHO grade I	**
Metaplastic meningioma WHO grade I	25%
Microcystic meningioma WHO grade I	**
Angiomatous meningioma WHO grade I	4%
Atypical meningioma WHO grade II	4%
Chordoid meningioma WHO grade II	
Clear cell meningioma WHO grade II	**
Anaplastic meningioma WHO grade III	

- AKT1 is members of the PI3K AKT mTOR pathway
- recurrent Akt1 p.Glu17Lys mut with constitutive activation of AKT1
- **AKT1 p.Glu17Lys** mut found in ~30% of skull-base meningiomas
 - AKT1 p.Glu17Lys mutated Men have distinct gene expression
 - patterns compared with NF2-mutant meningiomas
 - IHC evidence of PI3K–AKT–mTOR pathway activation

Neuro-Oncology

19(8), 1088–1096, 2017 | doi:10.1093/neuonc/nox018 | Advance Access date 6 May 2017

Frequent $AKT1^{E17K}$ mutations in skull base meningiomas are associated with mTOR and ERK1/2 activation and reduced time to tumor recurrence

Ümmügülsüm Yesilöz, Elmar Kirches, Christian Hartmann, Johannes Scholz, Siegfried Kropf, Felix Sahm, Makoto Nakamura, and Christian Mawrin

- 1-5% of meningiomas without alterations in NF2 and AKT1 harbour recurrent alterations in SMO (Hedgehog signaling pathway)
- SMO mut frequent in skull-base meningiomas (28%)
- Two hotspot mutations in SMO gene: Leu412Phe and Trp535Leu

Neuro-Oncology

19(3), 345-351, 2017 | doi:10.1093/neuonc/now276 | Advance Access date 12 January 2017

SMO mutation status defines a distinct and frequent molecular subgroup in olfactory groove meningiomas

Julien Boetto, Franck Bielle, Marc Sanson, Matthieu Peyre, and Michel Kalamarides

SMO gene

	SMO
Meningothelial meningioma WHO grade I	16%
Transitional meningioma WHO grade I	
Fibroblastic meningioma WHO grade I	
Psammomatous meningioma WHO grade I	
Secretory meningioma WHO grade I	
Metaplastic meningioma WHO grade I	-
Microcystic meningioma WHO grade I	
Angiomatous meningioma WHO grade I	
Atypical meningioma WHO grade II	
Chordoid meningioma WHO grade II	<u>.</u>
Clear cell meningioma WHO grade II	
Anaplastic meningioma WHO grade III	

Genomic sequencing of meningiomas identifies oncogenic *SMO* and *AKT1* mutations

Priscilla K Brastianos^{1-4,11}, Peleg M Horowitz^{3-6,11}, Sandro Santagata^{3,7}, Robert T Jones^{1,8}, Aaron McKenna⁴, Gad Getz⁴, Keith L Ligon^{3,7}, Emanuele Palescandolo⁸, Paul Van Hummelen^{1,8}, Matthew D Ducar^{1,8}, Alina Raza^{1,8}, Ashwini Sunkavalli^{1,8}, Laura E MacConaill^{1,8}, Anat O Stemmer-Rachamimov^{3,9}, David N Louis^{3,9,10}, William C Hahn^{1,3,4,8}, Ian F Dunn^{3,4,6} & Rameen Beroukhim^{1,3-5,8}

VOLUME 45 | NUMBER 3 | MARCH 2013

Figure 4 Associations between mutations in Hedgehog and AKT-mTOR pathways and histological findings. (a) Samples with mutations in SMO and AKT1-MTOR are predominantly of the meningothelial subtype (P = 0.005 and 0.009, respectively).NF2-mutated samples are predominantly fibroblastic and transitional (P = 0.013). Samples underwent hematoxylin and eosin staining (left). The distribution of samples within different histological subtypes is shown by pie chart (right). (b) Immunohistochemistry indicates activation of the Hedgehog (GAB1) and AKT-mTOR (STMN1) pathways in tumors harboring SMO and AKT1 mutations, respectively (P = 0.0008 and 3×10^{-6}). Scale bars, 50 µm. WT, wild type.

TRAF7 gene	 TRAF7 (E3 ubiquitin ligase; interacts with numerous pathways, including MAP3K3) TRAF7 mutations were found in up to 25% of WHO grade I and grade II Men > mutations mapped to WD40 domains, involved in regulation of JUN N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) signaling
KLF4 gene	 <i>KLF4</i> (Kruppel-like factor gene family) (transcriptional activation and repression) Hotspot mutation <i>KLF4</i> p.Lys409Gln in up to 50% of <i>NF2</i>-non-mutated Men Interestingly, have a high rate of co-occurrence with <i>TRAF7</i> mutations

Secretory meningiomas are defined by combined *KLF4* K409Q and *TRAF7* mutations

Acta Neuropathol (2013) 125:351-358

David E. Reuss · Rosario M. Piro · David T. W. Jones · Matthias Simon · Ralf Ketter · Marcel Kool · Albert Becker · Felix Sahm · Stefan Pusch · Jochen Meyer · Christian Hagenlocher · Leonille Schweizer · David Capper · Phillipp Kickingereder · Jana Mucha · Christian Koelsche · Natalie Jäger · Thomas Santarius · Patrick S. Tarpey · Philip J. Stephens · P. Andrew Futreal · Ruth Wellenreuther · Jürgen Kraus · Doris Lenartz · Christel Herold-Mende · Christian Hartmann · Christian Mawrin · Nathalia Giese · Roland Eils · V. Peter Collins · Rainer König · Otmar D. Wiestler · Stefan M. Pfister · Andreas von Deimling

Con-	See 1 See	150 400
(P) (P) (P)	- 9 ⁻ 9 ⁻	Starter
C. Y.	DI. Print	
al and	01 00000	1219
	2 08 0 0	1.36/
	3 4 2	Coge
10 G 835		INP'S
	10 m	10 0 0 1 00
0 01 0 1 1	38 81 BP 114	63 8 5

	TRAF7
Meningothelial meningioma WHO grade I	8%
Transitional meningioma WHO grade I	5%
Fibroblastic meningioma WHO grade I	
Psammomatous meningioma WHO grade I	
Secretory meningioma WHO grade I	100%
Metaplastic meningioma WHO grade I	\smile
Microcystic meningioma WHO grade I	**
Angiomatous meningioma WHO grade I	
Atypical meningioma WHO grade II	4%
Chordoid meningioma WHO grade II	
Clear cell meningioma WHO grade II	
Anaplastic meningioma WHO grade III	

	KLF4
Meningothelial meningioma WHO grade I	
Transitional meningioma WHO grade I	1227
Fibroblastic meningioma WHO grade I	**
Psammomatous meningioma WHO grade I	
Secretory meningioma WHO grade I	100%
Metaplastic meningioma WHO grade I	
Microcystic meningioma WHO grade I	
Angiomatous meningioma WHO grade I	1922
Atypical meningioma WHO grade II	44
Chordoid meningioma WHO grade II	
Clear cell meningioma WHO grade II	**
Anaplastic meningioma WHO grade III	

- **AKT1 mutations in Men**, as well as previous data showing activation of the AKT protein, supports deregulation of PI3K signaling pathway
 - Indeed, *PIK3CA* mutations in 7% of *NF2* non-mutated Meningiomas
 - PIK3CA-mutant Men were graded as WHO grade I (show limited chromosomal instability) and were enriched in skull base Meningiomas
 - PIK3CA-mutant Men lacked mutations in NF2, AKT1 and SMO, but they tended to harbour TRAF7 mutations

Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma

PI3K

gene

Neuro-Oncology

Neuro-Oncology 18(5), 649–655, 2016 doi:10.1093/neuonc/nov316 Advance Access date 28 January 2016

Malak Abedalthagafi[†], Wenya Linda Bi[†], Ayal A. Aizer[†], Parker H. Merrill[†], Ryan Brewster, Pankaj K. Agarwalla, Marc L. Listewnik, Dora Dias-Santagata, Aaron R. Thorner, Paul Van Hummelen, Priscilla K. Brastianos, David A. Reardon, Patrick Y. Wen, Ossama Al-Mefty, Shakti H. Ramkissoon, Rebecca D. Folkerth, Keith L. Ligon, Azra H. Ligon, Brian M. Alexander[‡], Ian F. Dunn[‡], Rameen Beroukhim[‡], and Sandro Santagata[‡]

POLR2A gene

NATURE GENETICS VOLUME 48 | NUMBER 10 | OCTOBER 2016 Recurrent somatic mutations in *POLR2A* define a distinct subset of meningiomas

Victoria E Clark^{1–3}, Akdes Serin Harmancı^{1,2}, Hanwen Bai^{1,3,14}, Mark W Youngblood^{1–3,14}, Tong Ihn Lee⁴, Jacob F Baranoski^{1–3}, A Gulhan Ercan-Sencicek^{2,5}, Brian J Abraham⁴, Abraham S Weintraub⁴, Denes Hnisz⁴, Matthias Simon⁶, Boris Krischek⁷, E Zeynep Erson-Omay^{1,2}, Octavian Henegariu^{1–3,5,8}, Geneive Carrión-Grant^{1,2}, Ketu Mishra-Gorur^{1–3,5,8}, Daniel Durán^{1–3}, Johanna E Goldmann⁴, Johannes Schramm⁹, Roland Goldbrunner⁷, Joseph M Piepmeier², Alexander O Vortmeyer¹⁰, Jennifer Moliterno Günel^{1,2}, Kaya Bilgüvar^{1,3,11}, Katsuhito Yasuno^{1,2}, Richard A Young^{4,12} & Murat Günel^{1–3,5,8,13}

- somatic mutations of *POLR2A* (DNA-directed RNA polymerase II subunit RPB1) in ~6% of Meningiomas
- POLR2A mutations did not coexist with any of previously described meningioma driver mutations
- associated with meningothelial histology and location in the tuberculum sellae.
- No POLR2A mutations were present in high-grade meningiomas

BAP1

- frequent inactivation of BAP1 in rhabdoid meningiomas
- BAP1 mutations are more frequent in meningiomas with >50% rhabdoid cells and a loss of BAP1 protein expression indicates early tumour recurrence.
- BAP1 immunohistochemistry could be a promising tool for risk stratification in patients with rhabdoid meningiomas (distinction of rhabdoid-appearing meningiomas into aggressive and less-aggressive tumour types)

Neuro-Oncology

BAP1-mutated rhabdoid meningiomas are clinically aggressive, requiring intensive clinical management.

19(4), 535–545, 2017 | doi:10.1093/neuonc/now235 | Advance Access date 9 November 2016

Germline and somatic BAP1 mutations in high-grade rhabdoid meningiomas

Ganesh M. Shankar,¹ Malak Abedalthagafi,¹ Rachael A. Vaubel, Parker H. Merrill, Naema Nayyar, Corey M. Gill, Ryan Brewster, Wenya Linda Bi, Pankaj K. Agarwalla, Aaron R. Thorner, David A. Reardon, Ossama Al-Mefty, Patrick Y. Wen, Brian M. Alexander, Paul van Hummelen, Tracy T. Batchelor, Keith L. Ligon, Azra H. Ligon, Matthew Meyerson, Ian F. Dunn, Rameen Beroukhim, David N. Louis, Arie Perry, Scott L. Carter, Caterina Giannini, William T. Curry Jr, Daniel P. Cahill,² Frederick G. Barker II,² Priscilla K. Brastianos,² and Sandro Santagata²

Neuro-Oncology

19(11), 1447–1456, 2017 | doi:10.1093/neuonc/nox094 | Advance Access date 8 May 2017

BAP1 mutations in high-grade meningioma: implications for patient care

Ganesh M. Shankar and Sandro Santagata

Loss of SMARCE1 expression is a specific diagnostic marker of clear cell meningioma: a comprehensive immunophenotypical and molecular analysis

Arnault Tauziede-Espariat ¹, Béatrice Parfait², Aurore Besnard¹, Joëlle Lacombe¹, Johan Pallud³, Sanaa Tazi⁴, Stéphanie Puget⁵, Guillaume Lot⁶, Benoît Terris⁷, Joëlle Cohen², Michel Vidaud², Dominique Figarella-Branger⁸, Franck Monnien⁹, Marc Polivka¹⁰, Homa Adle-Biassette¹⁰, Pascale Varlet¹

anti-SMARCE1 HPA003916 antibody

Meningioma Driver Mutations Determine Their Anatomical Site of Origin

- Mutations in the TERT promoter have a clear effect on the prognosis of meningioma
- Increased expression of TERT has been recognized in aggressive meningiomas.
- Mutations in the TERT promoter at the hotspot regions g.228C>T and g.250C>T were found in
 6.4% of meningiomas (1.7%, 5.7% and 20% of WHO grade I, II and III meningiomas, respectively).
- The prognostic effect of this alteration was independent from histological grade

High Incidence of Activating *TERT* Promoter Mutations in Meningiomas Undergoing Malignant Progression

Stéphane Goutagny^{1,2*}; Jean C. Nault^{2*}; Maxime Mallet²; Dominique Henin^{3,4}; Jessica Z. Rossi^{2,5,6}; Michel Kalamarides^{2,7,8}

DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis

Felix Sahm, Daniel Schrimpf, Damian Stichel, David T W Jones, Thomas Hielscher, Sebastian Schefzyk, Konstantin Okonechnikov, Christian Koelsche, David E Reuss, David Capper, Dominik Sturm, Hans-Georg Wirsching, Anna Sophie Berghoff, Peter Baumgarten, Annekathrin Kratz, Kristin Huang, Annika K Wefers, Volker Hovestadt, Martin Sill, Hayley P Ellis, Kathreena M Kurian, Ali Fuat Okuducu, Christine Jungk, Katharina Drueschler, Matthias Schick, Melanie Bewerunge-Hudler, Christian Mawrin, Marcel Seiz-Rosenhagen, Ralf Ketter, Matthias Simon, Manfred Westphal, Katrin Lamszus, Albert Becker, Arend Koch, Jens Schittenhelm, Elisabeth J Rushing, V Peter Collins, Stefanie Brehmer, Lukas Chavez, Michael Platten, Daniel Hänggi, Andreas Unterberg, Werner Paulus, Wolfgang Wick, Stefan M Pfister, Michel Mittelbronn, Matthias Preusser, Christel Herold-Mende, Michael Weller, Andreas von Deimling www.thelancet.com/oncology Vol 18 May 2017

ORIGINAL ARTICLE

Mutational patterns and regulatory networks in epigenetic subgroups of meningioma

Nagarajan Paramasivam^{1,2} · Daniel Hübschmann^{1,3,4,5} · Umut H Toprak^{6,7} · Naveed Ishague^{1,2,8} ·

Annekathrin Reinhardt^{10,11} · Annika K. Wefers^{10,11} · David T. W. Jones Johannes Werner^{1,15} · Sebastian Uhrig¹⁶ · Hans-Georg Wirsching¹⁷ Melanie Bewerunge-Hudler¹⁸ · Katja Beck² · Stephanie Brehmer¹⁹ · S Daniel Hänggi¹⁹ · Christel Herold-Mende²¹ · Ralf Ketter²⁰ · Roland Eil Wolfgang Wick^{25,26} · Michael Weller¹⁷ · Rachel Grossmann^{23,24} · Andr Felix Sahm^{7,10,11}

Marian Neidert⁹ · Daniel Schrimpf^{10,11} · Damian Stichel^{10,11} · David R meningiomas, similar to previous reports for Mrad. Aberrations of DMD were found to be enriched in MCs with NF2 mutations, and DMD was among the most differentially upregulated genes in NF2 mutant compared to NF2 wild-type cases. The mutational signature AC3, which has been associated with defects in homologous recombination repair (HRR), was detected in both sporadic meningioma and Mrad, but widely distributed across the genome in sporadic cases and enriched near genomic breakpoints in Mrad. Compared to the other MCs, the number of single nucleotide variants matching the AC3 pattern was significantly higher in the malignant MC, which also exhibited higher genomic instability, determined by the numbers of both large segments affected by copy number alterations and breakpoints between large segments. ChIP-seq analysis for H3K27ac revealed a specific activation of genes regulated by the transcription factor FOXM1 in the malignant MC. This analysis also revealed a super enhancer near the HOXD gene cluster in this MC, which, together with general upregulation of *HOX* genes in the malignant MC, indicates a role of *HOX* genes in meningioma aggressiveness. This data

Cell Reports

Comprehensive Molecular Profiling Identifies FOXM1 as a Key Transcription Factor for Meningioma Proliferation

Graphical Abstract

Authors

Harish N. Vasudevan, Steve E. Braunstein, Joanna J. Phillips, ..., Mitchel S. Berger, Arie Perry, David R. Raleigh

Correspondence david.raleigh@ucsf.edu

In Brief

Using multiplatform molecular profiling, Vasudevan et al. comprehensively define the molecular profile of aggressive meningioma. They identify genomic, epigenomic, and transcriptomic mechanisms that converge on a FOXM1/ Wnt signaling axis in aggressive meningioma that is associated with meningioma cell proliferation and is a marker of poor clinical outcomes across molecular subgroups.

Cell Reports 22, 3672–3683, March 27, 2018

Fig. 1 Summary of established epigenomic and genomic landscape of sporadic meningiomas. DNA methylation profiling distinguishes 2 distinct tumor subgroups with distinct risk profiles that refine risk of recurrence beyond standard-of-care histopathological grading and are associated with typical known mutations.

RESEARCH

Transcriptome signatures associated with meningioma progression

Open Access

Angela N. Viaene^{1,5†}, Bo Zhang^{2†}, Maria Martinez-Lage^{1,6†}, Chaomei Xiang^{3,7†}, Umberto Tosi^{4†}, Jayesh P. Thawani³, Busra Gungor³, Yuankun Zhu², Laura Roccograndi³, Logan Zhang³, Robert L. Bailey^{3,8}, Phillip B. Storm², Donald M. O'Rourke³, Adam C. Resnick², M. Sean Grady^{3*} and Nadia Dahmane^{3,4*}

As such, we identify *GREM2*, a regulator of the BMP pathway, and the snoRNAs *SNORA46* and *SNORA48*, as being significantly reduced in meningioma progression. Additionally, our study has identified several novel fusion transcripts that are differentially present in meningiomas, with grade I tumors that did not progress presenting more fusion transcripts than all other tumors. Interestingly, our study also points to a difference in the tumor immune microenvironment that correlates with histopathological grade.

BRIEF REPORT

Check for updates

Identification of PD-L2, B7-H3 and CTLA-4 immune checkpoint proteins in genetic subtypes of meningioma

Dustin T Proctor^{a,b,c}, Zeel Patel^{a,b,c}, Sanju Lama^{a,b,c}, Lothar Resch^d, Guido van Marle^e, and Garnette R Sutherland ^(b,b,c)

^aProject neuroArm, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; ^bHotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; ^cArnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada; ^dDepartment of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada; ^eDepartment of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada

In summary, we show that meningioma invokes a diverse range of immune responses, which in part may be contributed to by common genetic changes associated with this tumor. Immune checkpoint proteins PD-L2 and B7-H3 were the most abundant proteins tested and present in all grades of meningioma, indicating that these proteins may be of more importance to immune responses than previously described immune checkpoint proteins in meningioma. Furthermore, we also describe here the presence of CTLA-4 in high grade meningiomas. It will be interesting to validate these findings in a larger study covering all morphological and genetic subtypes of meningioma and evaluate the effects of these immune markers on clinical outcome.

Progression to Atypical Meningioma

Integrated genomic analyses of *de novo* pathways underlying atypical meningiomas

Akdes Serin Harmanci^{1,2}, Mark W. Youngblood^{1,2,3}, Victoria E. Clark^{1,2,3}, Süleyman Coşkun^{1,2}, Octavian Henegariu^{1,2,3,4,5}, Daniel Duran^{1,2}, E. Zeynep Erson-Omay^{1,2}, Leon D. Kaulen^{1,2}, Tong Ihn Lee⁶, Brian J. Abraham⁶, Matthias Simon⁷, Boris Krischek⁸, Marco Timmer⁸, Roland Goldbrunner⁸, S. Bülent Omay^{1,2}, Jacob Baranoski^{1,2,3}, Burçin Baran^{1,2}, Geneive Carrión-Grant^{1,2}, Hanwen Bai^{1,3}, Ketu Mishra-Gorur^{1,2,3,4,5}, Johannes Schramm⁷, Jennifer Moliterno^{1,2}, Alexander O. Vortmeyer⁹, Kaya Bilgüvar^{1,3,10}, Katsuhito Yasuno^{1,2}, Richard A. Young^{6,11} & Murat Günel^{1,2,3,4,5,12}

Genomic Instability

Hyper- or Hypo-methylated Phenotype

De novo atypical pathway

Acta Neuropathologica (2018) 135:955–963 https://doi.org/10.1007/s00401-018-1844-9

ORIGINAL PAPER

Loss of histone H3K27me3 identifies a subset of meningiomas with increased risk of recurrence

Leah M. Katz¹ · Thomas Hielscher² · Benjamin Liechty³ · Joshua Silverman¹ · David Zagzag³ · Rajeev Sen⁴ · Peter Wu¹ · John G. Golfinos⁴ · David Reuss^{5,6} · Marian Christoph Neidert⁷ · Hans-Georg Wirsching⁸ · Peter Baumgarten⁹ · Christel Herold-Mende¹⁰ · Wolfgang Wick^{11,12} · Patrick N. Harter^{13,14,15} · Michael Weller⁸ · Andreas von Deimling^{5,6} · Matija Snuderl³ · Chandra Sen⁴ · Felix Sahm^{5,6}

Table 3 Multivariable Cox regression model on WHO grade I/II cases

p value
0.028
0.003
06 0.14
0.26
1 0.96
24)()9

of H3K27me3 in cases with staining limited to vessels was confirmed by mass spectrometry on a subset of cases. Lack of staining for H3K27me3 in all tumor cells was significantly associated with more rapid progression (p = 0.009). In line, H3K27me3-negative cases were associated with a DNA methylation pattern of the more aggressive types among the recently introduced DNA methylation groups. Also, NF2 and SUFU mutations were enriched among cases with complete lack of H3K27me3 staining in tumor cells (p < 0.0001 and p = 0.029, respectively). H3K27me3 staining pattern added significant prognostic insight into WHO grade II cases and in the compound subset of WHO grade I and II cases (p=0.04 and p=0.007, respectively). However, it did not further stratify within WHO grade III cases. Collectively, these data indicate that epigenetic modifications beyond DNA methylation are involved in the aggressiveness of meningioma. It also suggests that H3K27me3 immunohistochemistry might be a useful adjunct in meningioma diagnostics, particularly for cases with WHO grade II histology or at the borderline between WHO grade I and II.

CrossMark

Molecular signalling pathways

- Molecular signaling pathways have been extensively studied in meningiomas
- Nearly all growth factor receptors and kinases known to be involved in tumour growth have been identified as contributing factors in meningiomas: including EGFR, PDGFRβ, VEGFR, IGFR, MET.
- Activation of these receptors drives intracellular signaling cascades involved in a plethora of cellular functions. including activation of mTOR

Overview of activated signaling pathways and potential drug targets in meningioma

mTORC1 Inhibitors Suppress Meningioma Growth in Mouse Models

Clin Cancer Res; 19(5); 1180-9.

Doreen Pachow¹, Nadine Andrae¹, Nadine Kliese¹, Frank Angenstein³, Oliver Stork², Annette Wilisch-Neumann¹, Elmar Kirches¹, and Christian Mawrin¹

Sample Integrated Molecular Pathology Report

Patient Name: HG	C	Date of Accession: / /			
Patient Age: 54			min / du / y		
Integrated Molecular Diagnosis: WHO unfa	O grade II meningio avourable, TERTp a	oma, methylation and NF2 mutation	i class ns		
Meningioma methylation Class unfavourable WHO Grade II					
TERT promoter mutation, NF2 mut Amenable to recurrence risk stratifi	ation ication by meningio	ma recurrence s	core		
2016 WHO Grade: II					
WTO REFERENCE AND	Witoses	Specific Criteria	Specific Histologies		
		Brain invasion	Clear cell		
Castles State	4-19/10HPF	Hypercellularity	Chordoid		
的,大型的变形。 我们就是你们的		Small cells	Rhabdoid		
A State of the sta	and a second	Prominent nucleoli	Papillary		
ALL ANTERNA DE	- 902 -	Sportaneous necro	sis		
		Architectural sheets	ng.		
Methylation class: Unfavourable					
wearyianon class, ornavourable					
w	Clinically releva	Clinically relevant CNA			
	⊠1p □4 []6q 10 14q 2]18q ⊠22q		
ting and the second	Clinically relev	ant mutations			
		1 COMO BAP-1 0	TERTP		
44	This mutation ma	kes the patient eligible fo	r clinical trial NCT0252		
	8 8 8 8 8 8 8 8				

EANO guidelines for the diagnosis and treatment of meningiomas

Malanda and a state of the second

Roland Goldbrunner, Giuseppe Minniti, Matthias Preusser, Michael D Jenkinson, Kita Sallabanda, Emmanuel Houdart, Andreas von Deimling, Pantelis Stavrinou, Florence Lefranc, Morten Lund-Johansen, Elizabeth Cohen-Jonathan Moyal, Dieta Brandsma, Roger Henriksson, Riccardo Soffietti, Michael Weller

	Molecular target or biomarker
AKT inhibitor	AKT1 (pGlu17Lys) mutation ¹³¹⁴
Hedgehog inhibitor	SMO (pTrp535Lev) mutation ¹³¹⁵
FAK inhibitor	NF2 (merlin) loss ^{16,17}
Immune checkpoint inhibitor	PD-1 or PD-L1 ¹⁸
VEGF or VEGFR inhibitor	VEGF or VEGFR219-21
PI3K inhibitors	PI3K ²²
Trabectedin	DNA, tumour-associated macrophages, angiogenesis ²³

www.thelancet.com/oncology Vol 17 September 2016

New molecular targets in meningiomas: the present and the future

Vyshak Alva Venur^a, Sandro Santagata^{b,c,d} Eva Galanis^e, and Priscilla K. Brastianos^a

Table 2: Potential drug classes and their targets for future therapies

Table 1. Summary of ongoing clinical trials in meningioma

Clinical trial identifier (clinicaltrials.gov)	Drug being evaluated	Meningioma subgroups included in the study	Estimated enrollment	Mechanism of action
NCT02523014	GSK2256098 and vismodegib	Meningioma with NF2, AKT1 SMO mutation	69	Combination of FAK and Hedgehog inhibitor
NCT03071874	Vistusertib (AZD2014)	Grade II and III	30	Dual mTORC1/mTORC2 inhibit
NCT02831257	Vistusertib (AZD2014)'	Progressive meningioma in neurofibromatosis 2 patients	18	Dual mTORC1/mTORC2 inhibit
NCT02933736	Ribociclib	Preoperative and postoperative treatment of meningioma	48	CDK4/6 inhibitor
NCT03279692	Pembrolizumab	Progressive high-grade meningioma	26	PD-1 inhibitor
NCT02648997	Nivolumab	Progressive high-grade meningioma	25	PD-1 inhibitor
NCT02234050	Trabectedin	Progressive high-grade meningioma	86	Preventing oncogenic factor from binding to DNA

<u>www.co-neurology.com</u> Volume 31 Number 6 December 2018

KEEP CALM cause this is just the BEGINNING

The Future

UNIBS.itt

Laboratory of Experimental and Translational Pathology Pathology Unit, DMMT, University of Brescia School of Medicine P. L. Poliani, M.D., Ph.D. Manuela Cominelli, Ph.D. Francesca Pagani, Ph.D.