

55° Congresso AINPeNC Associazione Italiana Neuropatologia e Neurobiologia Clinica

45° Congresso AIRIC Associazione Italiana Ricerca Invecchiamento Cerebrale

Bologna, 23-25 Maggio 2019

PLASMA DERIVED EXOSOMAL MICRORNAS PROFILE: NEW POTENTIAL BIOMARKER FOR ALZHEIMER'S DISEASE (AD) DIAGNOSIS

M. Serpente^a, Marianna D'Anca^a, C. Fenoglio^a, M. Arcaro^a, E.Oldoni^c, G. G. Fumagalli, A. Arighi^a, A. Cattaneo^b, L. Porretti^b, E. Scarpini^a and D. Galimberti^a

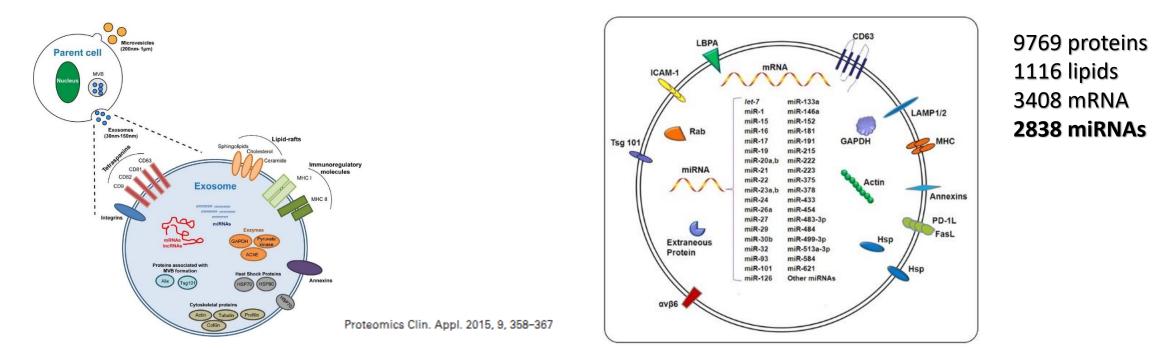
 ^aDept. of Pathophysiology and Transplantation, "Dino Ferrari" Center, University of Milan, Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
^bClinical Chemistry and Microbiology Laboratory, Flow Cytometry Service, Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
^cLaboratory for Neuroimmunology, KU Leuven University, Leuven, Belgium

BIOMARKERS FOR AD

Many proposed, but only few accurate

- Structural imaging (MRI)
- Functional imaging (PET-SPECT)
- Cerebrospinal fluid biomarkers (β-amyloid, total tau and p-tau)
- Genetics (PSEN1, PSEN2, APP, APOE)

PERIPHERAL BIOMARKERS

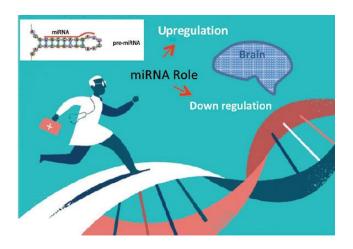

- > Cytokines
- Chemokines
- > Receptors
- Growth factors
- Adhesion molecules
- > Amyloid beta

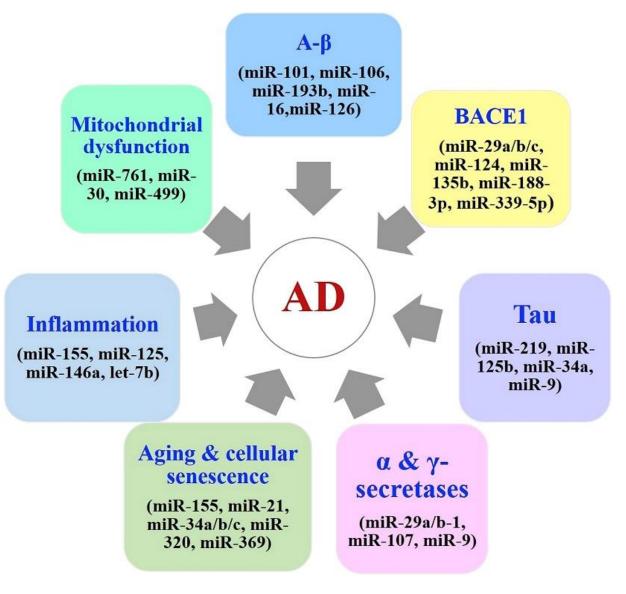
Protein identified	Method of detection	Comments	References
All ↓ in AD: TNF-α; PDGF-BB; M-CSF; G-CSF; CCL5; CCL7; CCL15; EGF; GDNF; IL-1α: IL-3	Proteomics antibody array. Patient groups:	Immune-responsive analytes and cytokines.	[41]
All ↑ in AD: Ang-2; ICAM-1; CCL18; CXCL8; IGFBP-6; IL-11; Trail-R4	Non-AD dementia $(n = 11)$; AD $(n = 86)$; MCI $(n = 47)$; Control $(n = 21)$; Rheumatoid arthritis $(n = 16)$	High accuracy for detecting AD.	
All ↓ in AD: APOC3; TTR; ICAM-1; RANTES; Cystatin.	Flow cytometry-based immunoassay.	One of the largest multi-center validation studies. Predicted	[44]
All ↑ in AD: PEDF; CC4; A1AcidG; Clusterin	Patient groups: AD $(n = 476)$; Control (n = 452); MCI $(n = 220)$	conversion of MCI to AD with an accuracy of 87%.	
All ↓ in AD: IL-17; EGFPR	Multiplex immunoassay. Patient groups:	Fold change between AD and control groups	[47]
All \uparrow in AD: Insulin-like growth factor binding protein 2; pancreatic polypeptide; Ang-2; Cortisol; Beta-2- microglobulin	AD (<i>n</i> = 207); Control (<i>n</i> = 754)	was not high.	
Clusterin ↑ in AD	LC-MS Total subjects (n = 744)	Has a role in atrophy in AD pathogenesis. Significantly (p < 0.001) associated with the rate of progression of AD.	[45]
All ↓ in AD: Creatine MB; G-CSF; S-100B; IL-10; IL-1ra; Prostatic acid phosphatase; C-reactive protein; TNF-α; Stem cell factor; MIP1α.	Multiplex Immunoassay Patient groups: AD (<i>n</i> = 197); Control (<i>n</i> = 203)	Specific algorithm in data analysis provided high specificity and sensitivity.	
All ↑ in AD: Thromboprotein; Alpha-2-macroglobulin; Tenascin; TNF-B; Beta-2-microglobulin; Eotaxin; Pancreatic polypeptide; von Willebrand factor; IL-15; VCAM-1; IL-8; IGFBP2; Fas ligand; Prolactin Resistin.			[46]
Aβ↓in AD	$A\beta_{1\!-\!4\!0}$ and $A\beta_{1\!-\!4\!2}$ by immunoassay	No significant difference between AD and controls	[20]

Khan and Alkon, JAD, 2015

EXOSOMES: WHAT ARE THEY?

- * Vesicles nano-sized (30-150nm) and cup-shaped used by cells for intercellular communication
- * Present in many biological fluids; serum, plasma, urine, cerebral spinal fluid (CSF)
- Deliver their contents to cells in neighborhood as well as to cells more distant
- Cell recognition molecules on surface (CD81 general marker, L1CAM neuron specific "cargo")
- ✤ Able to cross BBB providing information on the CNS
- * **Reflect** the **cell's content** from which they are secreted (lipids, proteins, mRNAs and miRNAs)



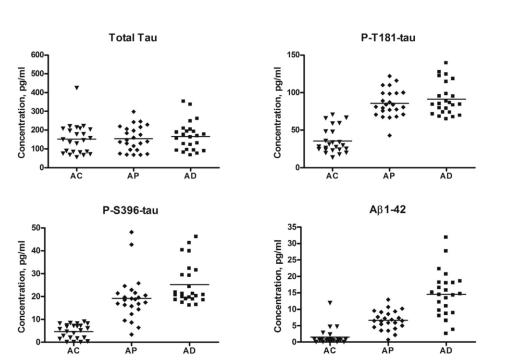

MIRNAS AND AD

miRNAs

- short regulatory RNAs (19–24 nt) regulating the translation of up to 60% of protein-coding genes
- mainly target the 3'-UTRs of mRNAs, also the 5'-UTRs, or even the coding region
- Downregulation and upregulation of gene expression

Reddy et al., Biochem Biophys Res Commun., 2017

EXOSOMES: FROM THE BRAIN TO THE BLOOD


* Exosomes are cell specific thanks to molecular markers on membrane, L1CAM (neural adhesion protein)

Identification of preclinical Alzheimer's disease by a profile of pathogenic proteins in neurally derived blood exosomes: A case-control study

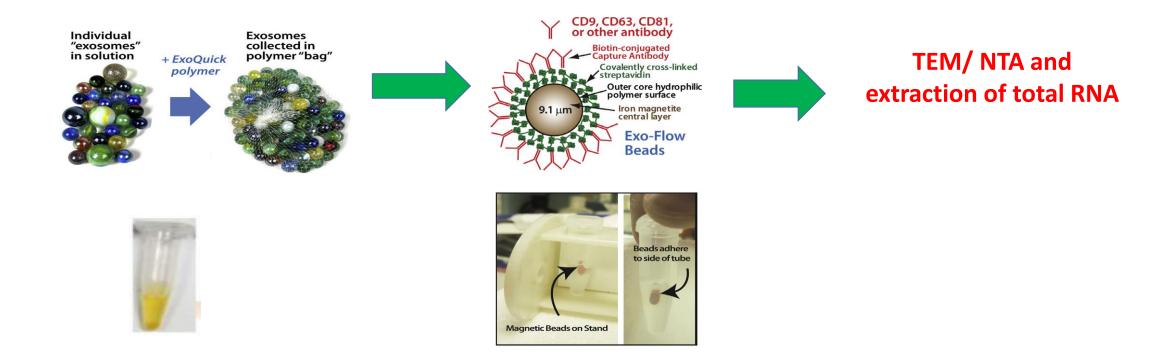
Massimo S. Fiandaca^{a,1}, Dimitrios Kapogiannis^{b,1}, Mark Mapstone^{c,1}, Adam Boxer^d, Erez Eitan^b, Janice B. Schwartz^e, Erin L. Abner^f, Ronald C. Petersen^g, Howard J. Federoff^a, Bruce L. Miller^d, Edward J. Goetzl^{e,*}

AD-pathogenic exosome proteins from neurally-derived blood exosomes extracted and quantified by ELISA to develop biomarkers for staging of sporadic AD.

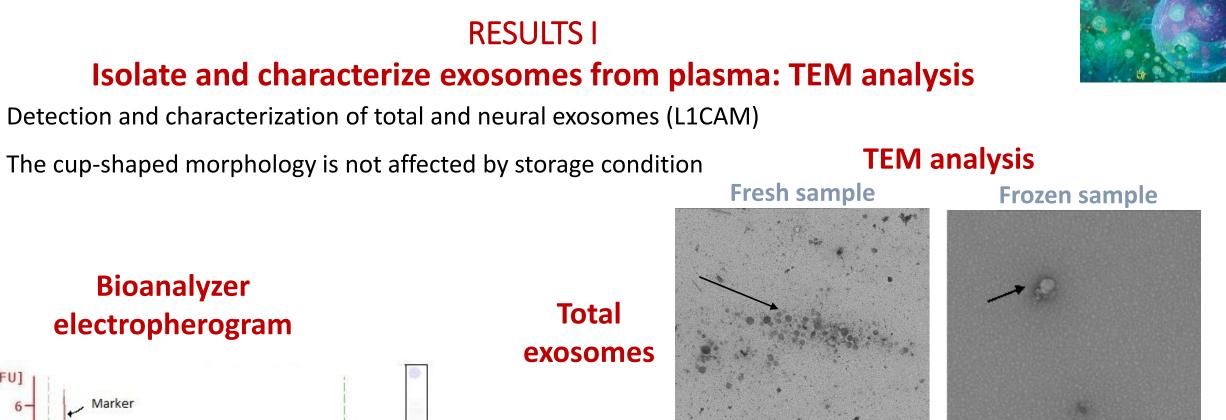
Levels of P-S396-tau, P-T181-tau, and Ab1–42 in extracts of neurally-derived blood exosomes predict the development of AD up to 10 years before clinical onset.


```
Volume 11, Issue 6, June 2015, Pages 600–607.
```


AIM OF THE STUDY


isolate and characterize total and neural derived exosomes (NDEs) from plasma of AD patients and healthy controls in order to detect specific microRNAs signature as potentially peripheral AD biomarkers

CHARACTERISTICS OF SUBJECTS ENROLLED IN THE STUDY


	AD	CTRLs
Number of subjects	20	20
Gender (M:F)	8:12	10:10
Mean Aβ1-42 (CSF)	510.96 pg/ml	804.98 pg/ml
Mean h-tau (CSF)	648.97 pg/ml	548.22 pg/ml
Mean P-tau (CSF)	86.54 pg/ml	74 pg/ml
Mean age, years	$72.77 \pm 0,22$	$66.54 \pm 0,65$

METHODS I Isolate and characterize exosomes from plasma

- Isolation of total exosomes and immuno-affinity purification of NDEs using anti-L1CAM antibody
- Sorting by flow cytometry, analysis by transmission electron microscopy (TEM) and Nanoparticle Tracking Analysis (NTA)
- Extraction of total RNA and analysis of the integrity and purity with Bioanalyzer

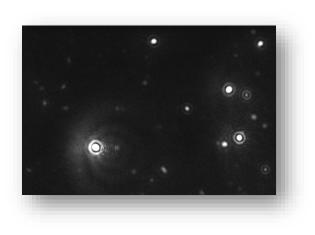
[FU] Marker 6-4sncRNA e IncRNA 2-4000 [nt] 25 200 1000

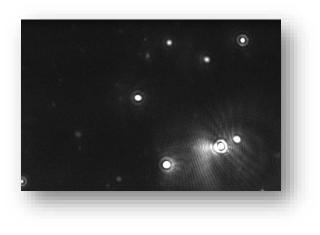
(B.02.07)

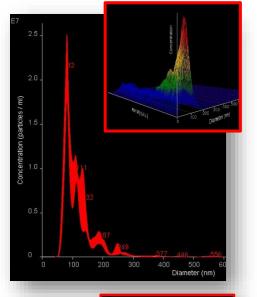
Overall Results for sample 1 :

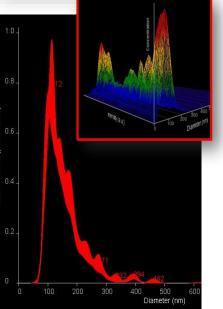
•••

**


RNA Area:	48,0	
RNA Concentration:	168 pg/µl	
rRNA Ratio [28s / 18s]:	0,0	
RNA Integrity Number (RIN):	2.5 (B.02	
Result Flagging Color:		
Result Flagging Label:	RIN: 2.50	


L1CAM


1 µm 200 nm 200 nm 200 nm


RESULTS I

Isolate and characterize exosomes from plasma: NTA analysis

Total Completed Tracks: 37414 Total Valid Tracks: 13155

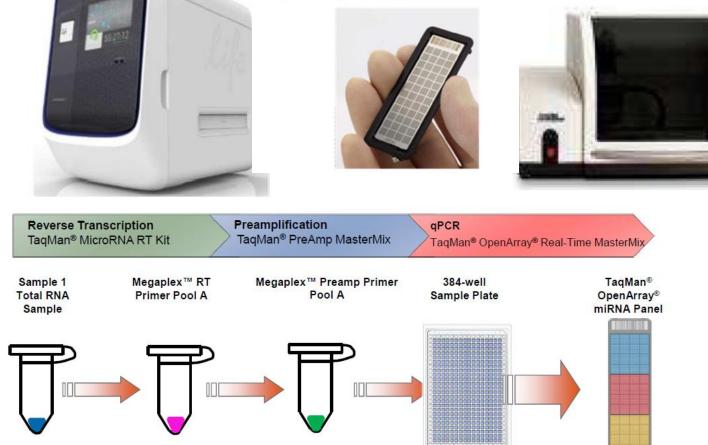
Concentration info: Mean +/- Standard Error Particles per frame : 50.9 +/- 9.5 Particles per ml : (5.0 +/- 0.9) x 10e11 Dilution : 5.0 x 10e2

Stats: Merged Data Mean: 117 nm Mode: 81 nm SD: 58 nm D10: 72 nm D50: 100 nm D90: 183 nm Stats: Mean +/- Standard Error Mean : 118 +/- 2.2 nm Mode : 79 +/- 1.5 nm SU : 5/ +/- 5.3 nm D10 : 73 +/- 1.1 nm D50 : 100 +/- 2.3 nm D90 : 187 +/- 4.4 nm

Total Completed Tracks: 30859 Total Valid Tracks: 7724

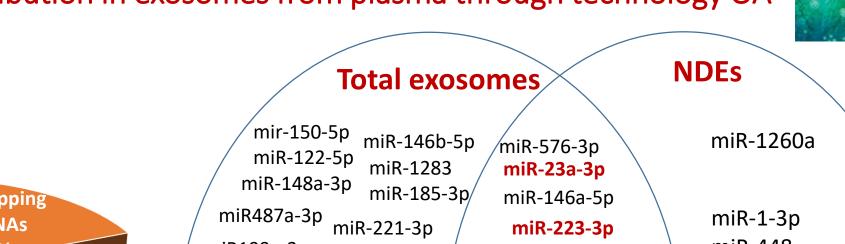
Concentration info: Mean +/- Standard Error Particles per frame : 36.1 +/- 1.2 Particles per ml : (1.2 +/- 0.0) x 10e10 Dilution : 1.7 x 10e1

Stats: Merged Data Mean : 156 nm Mode : 112 nm SD : 71 nm D10 : 93 nm D50 : 136 nm D90 : 239 nm Stats: Mean +/- Standard Error Mean : 156 +/- 3.7 nm Mode : 114 +/- 7.3 nm SD : /0 +/- 6.1 nm D10 : 94 +/- 2.8 nm D50 : 135 +/- 3.4 nm D90 : 239 +/- 7.3 nm


Total exosomes

L1CAM

METHODS II: miRNAs expression analysis by high-throughput Real-Time PCR and OpenArray[®] (OA) Technology



TaqMan® OpenArray® miRNA Panel

754 targets each sample

RESULTS II: miRNA distribution in exosomes from plasma through technology OA

miR-16-5p

miR-21-5p

miR-100-3p

miR-144-3p

miR-92a-3p

miR-92b-3p

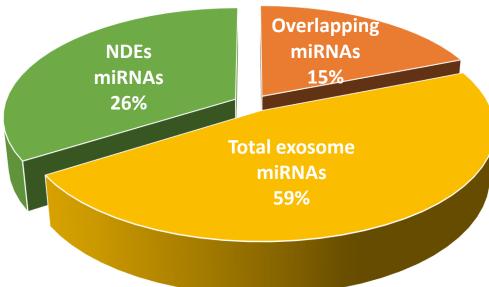
miR-516b-5p

miR-320a

miR-451a

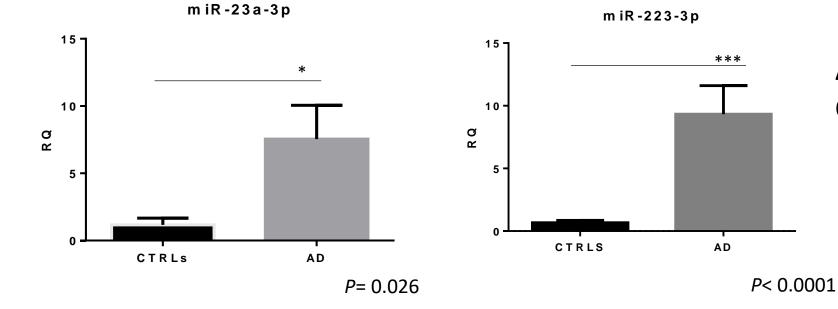
miR-501-3p

miR-let7b-5p

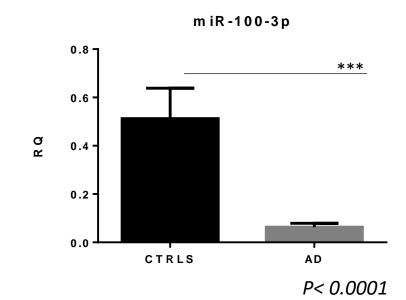


miR-452-3p

miR-502-3p

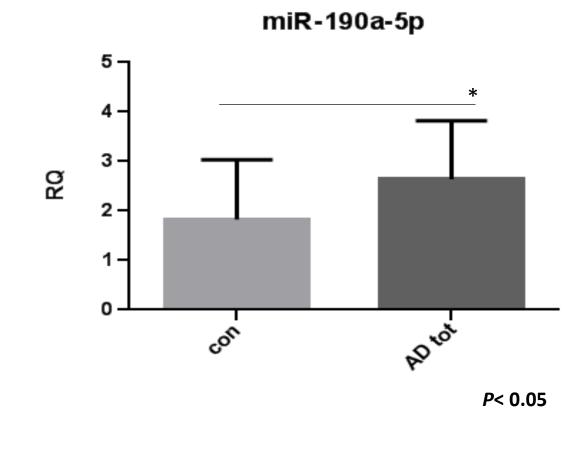

miR-190a-5p

miR199a-3p miR-22-2p miR-181a-3p miR-24-3p let-7a-3p miR-25-3p miR-125a-5p miR-340-5p miR126-5p miR-652-3p miR-149-5p miR-376a-3p miR-185-5p miR-192-5p miR-186-5p miR-484 miR-490-3p miR-15b-5p miR-19a-3p miR-501-3p miR-30a-5p miR-27a-3p miR-26b-5p miR-483-5p miR-17-5p miR-20a-5p



RESULTS II: miRNAs statistically significant in both exosomes population

AD patients= 20 subjects CNTRLs= 20 subjects



Predicted Target Genes

ADAM 9 (α-secretase of APP) ADAM 17 (α-secretase of APP) CXCL8 (IL8) ACTBL2 (PD)

RESULTS II: miRNAs statistically significant in L1CAM exosome population

AD patients= 20 subjects CNTRLs= 20 subjects

Predicted Target Genes

NLGN1 (Neuroligin-1, post-synapse assembly) SMAD2/4A (neuroinflammation) NRG3 (Neuregulin-3, BACE1 substrate) SYNJ1 (Synaptojanin-1, synaptic vesicle cycle) NFASC (Neurofascin) NCAM1 (Neural cell adhesion molecule-1)

WHAT'S NEXT

miD 222 200

Validation NDEs miRNAs expression from plasma with Droplet Digital PCR technology
miRNA isolation from exosomes of CSF using miRCURY Exosomes Isolation Kit (Exiqon)
Replicate the study on MCI subjects vs AD and healthy controls

PREDICTED TARGET GENES

miR-1260a: NRXN2 NEDD8 ADAM7 NSG1 BACE1	miR-653-5p: NEUROD6	miR-452-3p: TBK1 LRP1 LRP2 PFN2 CHCHD1	miR-190a-5p: NLGN1 SMAD2 SMAD4A NRG3 SYNJ1 NFASC NCAM1	miR-223-3p: SYNGR2 CACNG8 VAMP2	miR-100-3p: VAMP3 NEUROD1	ADAM9 ADAM17 SOD2 SMAD3
	Generate droplets	2	Perform PCR with Eval or hydrolysis probes	areen 3	Read and analyze results	

CONCLUSIONS

- These data demonstrate that we set up a good method to isolate NDEs from plasma and CSF.
- Consistent dysregulations of miRNAs in AD patients compared to controls were found.
- ✤57 miRNAs detected in plasma exosomes, particularly miR-223-3p, miR-146a-5p, and miR-23a-3p, already found to be dysregulated in neurodegenerative diseases.

The investigation of miRNAs **specific signature** from NDEs could have a **great potential** in the field of **clinical biomarkers discovery** and could also contribute to clarify the molecular mechanisms underneath AD and other neurodegenerative diseases.

ACKNOWLEGEMENTS

Neurology Unit, Dept. of Pathophysiology and Transplantation, "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan

Ch

Ma

Με

Fe

Lo

En

Prof. Elio Scarpini Daniela Galimberti

THANK YOU FOR YOUR ATTENTION

Tiziana Caranumi

Claudia Verderio

si

idoni

110

Maria Carla Panzeri

Clinical Chemistry and Microbiology Laboratory, Flow Cytometry and **Experimental Hepatology Service**

Laura Porretti

Alessandra Cattaneo Valentina Trunzo