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The entorhinal cortex is one of the first regions to exhibit neurodegeneration in Alzheimer’s disease, and as such identification of

entorhinal cortex dysfunction may aid detection of the disease in its earliest stages. Extensive evidence demonstrates that the

entorhinal cortex is critically implicated in navigation underpinned by the firing of spatially modulated neurons. This study tested

the hypothesis that entorhinal-based navigation is impaired in pre-dementia Alzheimer’s disease. Forty-five patients with mild

cognitive impairment (26 with CSF Alzheimer’s disease biomarker data: 12 biomarker-positive and 14 biomarker-negative) and

41 healthy control participants undertook an immersive virtual reality path integration test, as a measure of entorhinal-based

navigation. Behavioural performance was correlated with MRI measures of entorhinal cortex volume, and the classification

accuracy of the path integration task was compared with a battery of cognitive tests considered sensitive and specific for early

Alzheimer’s disease. Biomarker-positive patients exhibited larger errors in the navigation task than biomarker-negative patients,

whose performance did not significantly differ from controls participants. Path-integration performance correlated with Alzheimer’s

disease molecular pathology, with levels of CSF amyloid-b and total tau contributing independently to distance error. Path inte-

gration errors were negatively correlated with the volumes of the total entorhinal cortex and of its posteromedial subdivision. The

path integration task demonstrated higher diagnostic sensitivity and specificity for differentiating biomarker positive versus negative

patients (area under the curve = 0.90) than was achieved by the best of the cognitive tests (area under the curve = 0.57). This study

demonstrates that an entorhinal cortex-based virtual reality navigation task can differentiate patients with mild cognitive impair-

ment at low and high risk of developing dementia, with classification accuracy superior to reference cognitive tests considered to be

highly sensitive to early Alzheimer’s disease. This study provides evidence that navigation tasks may aid early diagnosis of

Alzheimer’s disease, and the basis of this in animal cellular and behavioural studies provides the opportunity to answer the

unmet need for translatable outcome measures for comparing treatment effect across preclinical and clinical trial phases of

future anti-Alzheimer’s drugs.
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Introduction
To date, all interventional trials aimed at slowing the pro-

gression of Alzheimer’s disease have failed. Two of the

main contributors to this failure are: (i) problems in iden-

tifying the initial stages of Alzheimer’s disease, such that

interventional trials are applied too late in the disease pro-

cess; and (ii) the lack of translatable outcome measures for

comparing treatment effects across preclinical testing in

animal models of disease and clinical trials in patient popu-

lations (Mehta et al., 2017).

Detection of Alzheimer’s disease-related changes in

entorhinal cortex (EC) function provides a potential solu-

tion to both of these problems. Degeneration of the EC is a

critical initial stage of typical Alzheimer’s disease (Braak

and Del Tredici, 2015), with 60% loss of layer II EC neu-

rons observed by the time cognitive impairment is manifest

(Gomez-Isla et al., 1997). Additionally, there is emerging

evidence that the initial stages of Alzheimer’s disease may

be associated with the trans-neuronal spread of patho-

logical tau within the EC-hippocampal circuit (de

Calignon et al., 2012; Ahmed et al., 2014), prior to neo-

cortical infiltration. As such, tests sensitive to EC function

might have added value in identifying the very earliest

stages of Alzheimer’s disease, prior to hippocampal

involvement.

Extensive evidence from animal studies indicates that the

EC is involved in spatial navigation. In vivo single cell

studies have identified EC neurons with spatially-modulated

firing patterns, including grid cells (Hafting et al., 2005),

head direction cells (Sargolini et al., 2006) and border cells

(Solstad et al., 2008), with firing activity coupled to spatial

behaviours (McNaughton et al., 2006). Together with hip-

pocampal place cells (O’Keefe and Dostrovsky, 1971),

these EC cells are considered to represent the neural basis

of a cognitive map (O’Keefe and Nadel, 1978) that medi-

ates spatial behaviours (Fyhn et al., 2007; Lester et al.,

2017). Within the EC, the medial EC (mEC) is considered

to be particularly involved in navigation, given that up to

95% of mEC neurons may be grid cells (Diehl et al., 2017),

in contrast to lateral EC neurons, which exhibit little spa-

tial selectivity. Evidence that the EC underpins navigation

in other mammalian species is supported by the demonstra-

tion of EC grid cells in bats (Yartsev et al., 2011), monkeys

(Killian et al., 2012) and humans (Jacobs et al., 2013).

The EC is a phylogenetically conserved structure with

distinct medial and lateral subdivisions that are homolo-

gous with the anterolateral EC (alEC) and posteromedial

EC (pmEC) in humans (Navarro Schröder et al., 2015;

Naumann et al., 2016, 2018). Sensory characteristics of

objects appear to be represented in the alEC (Olsen et al.,

2017; Yeung et al., 2017; Reagh et al., 2018) while repre-

sentations of scenes and current location based upon self-

motion are represented in the pmEC (Reagh and Yassa,

2014; Berron et al., 2018; Campbell et al., 2018), with

both streams converging on the hippocampus. Thus, inte-

gration of self-motion cues requires the pmEC, whereas

remembering the spatial configuration of an environment

and the objects/contents within it is dependent upon the

hippocampus (Knierim et al., 2014). Path integration is

the ability to keep track of, and return to, a previously

visited location and is dependent upon the continuous in-

tegration of multisensory cues (visual, proprioceptive and

vestibular) representing current position and heading direc-

tion in reference to a fixed location (Etienne and Jeffery,

2004; McNaughton et al., 2006). While several brain re-

gions are thought to contribute to path integration there is

robust evidence that the EC and the periodic firing of grid

cells are central to this navigation strategy (McNaughton

et al., 2006; Burgess, 2008), supplemented by inputs from

other EC cells with spatially-modulated firing, notably head

direction cells. Moreover in rodents, path integration def-

icits are elicited by mEC lesions (Parron and Save, 2004;

Van Cauter et al., 2013; Knierim et al., 2014; Jacob et al.,

2017) and attenuated grid cell firing achieved via both

mEC layer 2 knockout (Tennant et al., 2018), and gluta-

matergic receptor 1 knockout (Allen et al., 2014). This evi-

dence from the animal literature is reinforced by human

imaging studies that demonstrate the role of the EC in

components of path integration such as route planning

(Maguire et al., 1998; Jacobs et al., 2010), computation

of goal direction (Chadwick et al., 2015) and goal distance

(Spiers and Maguire, 2007; Howard et al., 2014). Finally,

dysfunction of grid cell-like activity is associated with path

integration deficits in older adults (Stangl et al., 2018).

Spatial tests, based on the cognitive map theory, have al-

ready shown that spatial processing is impaired in early

Alzheimer’s disease. The Four Mountains Test (4MT), a hip-

pocampal-dependent test of allocentric spatial memory

(Hartley et al., 2007), differentiates patients with mild cogni-

tive impairment (MCI) with and without CSF biomarkers of

1752 | BRAIN 2019: 142; 1751–1766 D. Howett et al.



Alzheimer’s disease (MCI + and MCI�, respectively)

(Moodley et al., 2015) and is predictive of conversion from

MCI to dementia (Wood et al., 2016). Crucially for detection

of Alzheimer’s disease prior to symptom onset, performance

on the 4MT correlates with dementia risk score in asymp-

tomatic 40–59 year olds (Ritchie et al., 2018), while young

adult APOE "4 carriers at increased risk of Alzheimer’s dis-

ease exhibit reduced grid-cell like representations and activa-

tion of the EC during a functional MRI navigation task

(Kunz et al., 2015). Finally, impaired route learning and

way-finding is observed in asymptomatic individuals with

positive amyloid-PET scans (Allison et al., 2016).

These previous studies provide the backdrop for the pre-

sent study, which investigates EC-based navigation in MCI

patients at risk of developing dementia. Navigation will be

tested using a path integration task (Fig. 1A). In this study,

path integration will be tested using an immersive virtual

reality (iVR) paradigm where participants navigate by real-

world walking within simulated environments. Immersive

VR has several theoretical and operational advantages

over ‘desktop’ VR tasks, which are typically performed

seated and thus without locomotor or proprioceptive feed-

back, both of which are pivotal for grid cell function

(Winter et al., 2015). First, the actual movement in iVR

approximates real world navigation and thus has greater

ecological validity than desktop VR. Second, there is evi-

dence of differing neural processes underlying desktop and

actual navigation, with desktop VR being associated with

lower frequency hippocampal theta oscillations (Bohbot

et al., 2017). This has negative implications for desktop

VR as a valid proxy for real life navigation. Lastly, larger

rotational (Klatzky et al., 1998) and distance errors (Distler

et al., 1998; Sinai et al., 1999; Adamo et al., 2012) have

been reported in desktop VR navigation when compared

with tasks requiring active movement, possibly reflecting

the absence of self-motion cues, leading in turn to reduced

grid cell activation (Ólafsdóttir and Barry, 2015).

The primary objective of this study was to test the hypoth-

esis that performance on an iVR path integration task of EC

function would differentiate MCI patients at increased risk

of developing dementia. The secondary study objectives were

to determine: (i) whether manipulation of the environmental

conditions would affect path integration performance; (ii)

whether path integration test performance correlates with

EC volumes; and (iii) whether the path integration task ex-

hibits greater classification accuracy than current cognitive

tests considered to have high diagnostic sensitivity and spe-

cificity for early Alzheimer’s disease.

Materials and methods

Participants

Patients with MCI (n = 45) were recruited from the Cambridge
University Hospitals NHS Trust Mild Cognitive Impairment
and Memory Clinics. MCI was diagnosed by neurologists ac-
cording to the Petersen criteria (Petersen, 2004), diagnosis of

which requires: (i) subjective cognitive complaint; (ii) objective
evidence of cognitive impairment; (iii) preserved activities of
daily living; (iv) functional independence; and (v) absence of
dementia. Objective cognitive decline was evaluated using the
Addenbrooke’s Cognitive Examination-Revised (ACE-R; Mioshi
et al., 2006) and a score of 0.5 on the Clinical Dementia Rating
scale (CDR) (Morris, 1997). All patients underwent screening
blood tests to exclude reversible causes of cognitive impairment.
Exclusion criteria included the presence of a major medical or
psychiatric disorder, epilepsy, a Hachinski Ischaemic Score 44
(Moroney et al., 1997), a history of alcohol excess or any visual
or mobility impairment of such severity as to compromise abil-
ity to undertake the iVR test.

Twenty-six patients with MCI underwent CSF biomarker
studies (amyloid-b1–42, total tau, phosphorylated tau) as part
of their clinical diagnostic workup. Biomarker studies were
undertaken using ELISA assay kits (Innotest, Innogenetics) as
outlined elsewhere (Shaw et al., 2009). Thresholds for positiv-
ity were set as CSF amyloid 5550 pg/ml, CSF tau 4375 pg/ml
with a CSF tau: amyloid ratio of 40.8 (Mulder et al., 2010).
MCI patients were stratified into biomarker-positive (MCI + ,
n = 12) and biomarker-negative (MCI�, n = 14) groups
(Table 1). Researchers undertaking the VR tests were blinded
to the CSF status of patients. The remaining 19 patients with
MCI did not undergo CSF studies as part of their clinical
workup. Healthy control participants without a history of cog-
nitive impairment (healthy control subjects, n = 41, Table 1)
were recruited from Join Dementia Research, an online reposi-
tory of patients and volunteers interested in participating in
dementia research.

The study was undertaken in line with the regulations out-
lined in the Declaration of Helsinki (WMA, 2013) and was
approved by the NHS Cambridge South Research Ethics
Committee (REC reference: 16/EE/0215).

The immersive virtual reality path
integration task

The path integration task was administered using the HTC
Vive iVR kit (Fig. 1B), which uses external base stations to
map out a 3.5 � 3.5 m space within which participants walked
during the VR task. If participants went beyond the tracked
boundary by 30 cm, an ‘out of border’ warning appeared in
their sightline to encourage them to not walk any further.
Researchers were also in the immediate proximity to ensure
that participants did not venture beyond the test space.

The task was programmed in the Unity game engine and ran
on Steam VR software, running on an MSI VR One backpack
laptop.

The path integration task was undertaken within virtual
open arena environments with boundary cues projected to in-
finity (Fig. 1C). Three environments were used, each with
unique surface details, boundary cues and lighting. The ab-
sence of local landmarks ensured EC-grid cell dependent stra-
tegies rather than striatal-mediated landmark-based navigation
(Doeller et al., 2008).

No enclosure or local landmarks were present during the
task in order to exclude any non-path integration compensa-
tory navigation strategies. A 1:1 correspondence between
movement in the real and virtual worlds eliminated vestibular
mismatch and minimized nausea and other tolerability issues.
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Participants were asked to walk an ‘L’-shaped outward path
to three different locations, each marked by inverted cones at
head height numbered one, two and three (Fig. 1A and C).
Only one cone was present at a time, each cone would dis-
appear after the participant reached it and the next cone in
sequence would appear. An auditory stimulus was presented
with a cone’s appearance prompting participants toward the
next cone’s location. Upon reaching cone 3, a message pro-
jected onto the virtual scene asking participants to walk back
to their remembered location of cone 1 (return path). When
they reached their estimated location of cone 1, participants
pressed a trigger on a hand-held controller that logged their
location and ended the trial.

Pre-trial practice sessions consisted of 20 s of habituation
to the iVR environment, during which participants were
encouraged to explore the environment. Following habitu-
ation, participants performed five practice trials, where cone

1 was re-presented at the end of each trial to provide direct
visual feedback to participants on the distance error between
the remembered and actual locations of cone 1.

The task consisted of nine trials conducted within each of
the three environments, totalling 27 trials per participant. To
examine the effects of environmental cues on path integration,
the environment was altered during the return path when par-
ticipants were attempting to return to the remembered location
of cone 1. Three return conditions were used: condition A, no
environmental change (Fig. 1D); condition B, removal of
boundary cues (Fig. 1E); and condition C, removal of surface
detail (Fig. 1F).

Each return condition was presented three times per envir-
onment, with return conditions presented pseudo-randomly in
each environment in order to ensure participants were relying
more on proprioceptive and self-motion cues rather than allo-
thetic strategies.

Figure 1 Path integration task. (A) Illustration of the path integration task. Each numbered inverted blue cone is a location marker. Only one

cone was visible at a time; upon reaching a blue cone it disappeared and the next one in the sequence appeared. Red arrows indicate the guided

sequence along two sides of the triangle. The yellow arrow, the last side of the triangle, signifies the assessed return path, performed in the

absence of any cones. (B) Demonstration of VR equipment on a participant during the task, used with permission. (C) Example environment from

the head mounted display with textural and boundary cues present, with cone 1 and the controller shown. Texture and boundary cues are present

in all trials when navigating between cones. (D–F) Return conditions applied when attempting to return to the location of cone 1 only (yellow

arrow, A) and included no change (D), removal of environment boundaries (E) and removal of surface detail (F).
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Condition B was designed to increase dependence on self-
motion cues and homing vector calculation by removing
boundary cue information (Burgess et al., 2004), thereby
placing a greater cognitive load on the path integration
network (Zhao and Warren, 2015). Condition C was de-
signed to prevent feedback from surface motion during
locomotion, thereby disrupting optic flow (Kearns et al.,
2002) and increasing dependence on allocentric representa-
tions of space (Nardini et al., 2008). As such, return con-
ditions B and C were considered analogous to ‘stress tests’
for EC network-dependent navigation, with the prediction
that a greater impairment in task performance would
be observed during these conditions, compared with condi-
tion A.

Performance in the iVR path integration task was assessed
using three outcome measures. Absolute distance error,
the primary outcome measure, was defined as the
Euclidean distance between estimated and actual location
of cone 1, in line with previous research (Fig. 2; Chrastil
et al., 2015; Mokrisova et al., 2016). Two secondary
outcome measures were included to deconstruct absolute
distance errors into its proportional angular and linear
components. These measures additionally controlled for
between-trial variance in triangle geometry owing to the
pseudo-random generation of cone locations that could
affect task difficulty, although variance is minimal in
paths 510 m long (Harris and Wolbers, 2012).
Proportional angular errors reflect the accuracy of per-
formed rotation at cone 3 toward the participant’s esti-
mated location of cone 1 compared to the optimal

rotation required to align with cone 1 (Supplementary Fig.
1A). Proportional linear errors reflected the accuracy of dis-
tance estimation, with the Euclidean distance travelled be-
tween cone 3 and the participant’s estimated location of
cone 1 compared to the distance between cone 3 and
actual location of cone 1 (Supplementary Fig. 1B).

Table 1 Demographics and neuropsychological test scores of across patients with mild cognitive impairment and

healthy controls participants

Healthy

controls (n = 41)

MCI (n = 45)

MCI (n = 45) Negative (n = 14) Positive (n = 12)

Age 69.3 � 7.5 71.7 � 8.3 n.s 71.1 � 9.0 75.4 � 7.0 n.s

Males (%) 15 (36) 12 (63)n.s 10 (71) 9 (75)n.s

Years in education 14.8 � 3.61 14.2 � 3.37 n.s 14.5 � 4.4 14.5 � 3.8 n.s

ACE-R 97.2 � 3.2 89.3 � 5.4* 86.6 � 7.6 80.1 � 12.1 n.s

MMSE 29.7 � 0.6 27.90 � 1.7* 27.6 � 2.6 25.0 � 1.7 n.s

NART Errors 6.28 � 3.40 17 � 10.95* 13.1 � 8.9 9.1 � 6.8 n.s

Rey Figure Recall

Copy 36 � 0 34.2 � 2.7* 34.4 � 1.7 33.1 � 4.4 n.s

Immediate 22.2 � 7.6 17.5 � 9.8* 13.8 � 8.3 9.6 � 9.1 n.s

Delayed 21.3 � 7.9 15.8 � 11.0* 12.8 � 9.8 8.3 � 9.6 n.s

FCSRT immediate

Free 34.3 � 5.1 24.9 � 11.5* 22.1 � 9.2 15.4 � 11.4*

Total 47.6 � 0.6 44.7 � 5.7* 43.1 � 8.3 36.1 � 11.5 n.s

FCSRT delayed

Free 13.4 � 1.5 9.3 � 5.3* 7.9 � 5.1 4.8 � 4.8 n.s

Total 16 � 0 14.8 � 2.3* 13.9 � 4.1 12.3 � 4.0 n.s

Trails B, s 77.2 � 26.5 145.6 � 72.8* 130.1 � 42.2 152.6 � 88.6 n.s

Digit Symbol 64.2 � 14.5 49.9 � 14.1* 47.0 � 7.5 43.7 � 13.7 n.s

4MT 10.8 � 1.8 9.3 � 3.0* 7.3 � 3.4 6.8 � 2.2 n.s

Between group differences in neuropsychological test performance were assessed between healthy control subjects versus MCI as a whole, and MCI + versus MCI�, scores indicate

number of correct responses unless otherwise indicated. *P5 0.05, *P5 0.02 (Bonferroni-adjusted alpha); n.s = P4 0.05.

Digit Symbol = Digit Symbol Substitution Test; FCSRT = Free and Cued Selective Reminding Test; MMSE = Mini-Mental State Examination; NART = National Adult Reading Test; Trails

B = Trail Making Test B.

Figure 2 Primary measures of performance accuracy.

Absolute distance error is defined as the Euclidean distance be-

tween the participant’s estimate of location one (goal) and the actual

location of cone 1.
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MRI acquisition and analysis

Thirty-seven healthy control subjects and 34 MCI patients (11
MCI + , 9 MCI�) underwent MRI scanning on 32 channel
Siemens 3 T Prisma scanners based either at the MRC
Cognition and Brain Sciences Unit, Cambridge, or the
Wolfson Brain Imaging Centre, Cambridge, with the same ac-
quisition parameters used at the two scan sites. The scan
protocol included whole brain 1 � 1 � 1 mm T1-weighted
MPRAGE (acquisition time 5 min 12 s, repetition time
2300 ms, echo time 2.96 ms) and high-resolution
0.4 � 0.4 � 2 mm T2-weighted scans through the hippocampal
formation with scans aligned orthogonally to the long axis of
the hippocampus (acquisition time 8 min 11 s, repetition time
8020 ms, echo time 50 ms).

As well as segmentation of the whole EC, additional segmen-
tation of the alEC and pmEC subregions, representing the
human homologues of the rodent lateral and medial EC, re-
spectively, was undertaken given their differing roles in spatial
processing (Van Cauter et al., 2013; Knierim et al., 2014).
Converging evidence from functional MRI studies indicate a
functional domain-specificity to the EC that mirrors rodent
research, whereby the pmEC and alEC is implicated in pro-
cessing scene and object information, respectively (Maass
et al., 2015; Navarro Schröder et al., 2015). Whilst age-related
deficits in object-related processing have been related to alEC
hypoactivity (Berron et al., 2018; Reagh et al., 2018), no re-
search to date has investigated the relationship between EC
subfield volumetry and performance in navigational tasks in
either MCI or Alzheimer’s disease. While segmentation proto-
cols for these subregions are available at 7 T (Maass et al.,
2015), no complete protocol is available for segmentation at
3 T. Therefore, for this study, an in-house protocol was
devised that partially segmented alEC and pmEC using the
three anterior-most and three posterior-most slices of the EC.
Intermediate slices were not used for alEC and pmEC segmen-
tation because of the overlap of the two subdivisions within
this part of the EC and the absence of robust anatomical land-
marks for delineating this progressive boundary. As such, this
protocol prioritized specificity of segmentation over complete-
ness (Supplementary material). Manual segmentation was per-
formed in ITK-SNAP (Yushkevich et al., 2006) (Fig. 3, detailed
protocol in Supplementary material). High inter- and intra-
rater reliability was achieved for the manual segmentation
protocol of the EC, alEC and pmEC, consistent with previous
research (Berron et al., 2017; Olsen et al., 2017)
(Supplementary Table 1).

Given the involvement of the hippocampus and retrosplenial
cortex in path integration (Worsley et al., 2001; Chrastil et al.,
2015) these additional regions of interest were also segmented
using Freesurfer 6.0 (Fischl et al., 2002; Iglesias et al., 2015).
In the absence of an automated protocol for the complete seg-
mentation of the retrosplenial cortex, posterior cingulate
cortex (PCC) and isthmus of cingulate cortex masks were
used as a proxy measure of the retrosplenial cortex, with the
former encompasses the retrosplenial cortex along with other
structures and the latter targeting the ventral retrosplenial
cortex implicated in processing scene information (Vann
et al., 2009; Mitchell et al., 2018).

All segmentations were manually inspected to exclude cysts,
CSF and meninges; all volumetric measurements were averaged
between hemispheres and normalized to intracranial volume.

Comparator neuropsychological tests

To compare the ability of the iVR test to classify prodromal
Alzheimer’s disease with that of reference neuropsychological
tests considered to be highly sensitive to early Alzheimer’s dis-
ease. All participants were administered a battery of tests
chosen for their effectiveness in predicting conversion from
MCI to dementia (i–iii), inclusion in the Preclinical
Alzheimer’s Cognitive Composite (i and iv) approved by the
FDA for use as cognitive outcome measures in trials aimed at
preclinical Alzheimer’s disease, or prior work indicating high
sensitivity and specificity for prodromal Alzheimer’s disease
(v).

These tests are as follows (cognitive domains assessed in
parentheses): (i) Free and Cued Selective Reminding Test
(FCSRT, episodic memory – verbal; Buschke, 1984); (ii) Rey
figure recall (RFR, episodic memory – non-verbal, Osterrieth,
1944); (iii) Trail Making Test B (TMT-B; executive function,
attention, processing speed; Bowie and Harvey, 2006); (iv)
Digit Symbol test (DST, attention, processing speed, Ryan
and Lopez, 2001); and (v) 4MT (allocentric spatial memory;
Hartley et al., 2007). All participants also underwent global
cognitive testing with the ACE-R (Mioshi et al., 2006) and the
National Adult Reading Test (NART; Nelson, 1982), as a
measure of premorbid IQ.

Statistical analysis

Demographic differences between MCI + and MCI� were as-
sessed using one-way ANOVA, or the Kruskal Wallis test
where parametric assumptions were violated, whereas differ-
ences between healthy control subjects and total (combined)
MCI were assessed using t-tests or non-parametric Mann-
Whitney test.

Between-group performance in the path integration task
compared all MCIs against healthy control subjects, as well
as MCI + against MCI�. Linear mixed effect modelling
(LME) was used to assess the effect of MCI status on absolute
distance error, proportional angular error and proportional
linear error. LMEs are the most suitable method for analysing
clustered datasets (27 trials with one of three return conditions
per trial per participant), with missing data (excluded due to
travelling ‘out of border’, see ‘Results’ section), and unba-
lanced designs (Moen et al., 2016). Final model fixed effects
included an interaction term between diagnosis and return
condition, along with covariates of age, sex, years in educa-
tion, ACE-R, NART and VR environment. Unique participant
identifiers were used as the random intercept and VR environ-
ment as random coefficient, for further details see the
Supplementary material. Reported denominator degrees of
freedom were computed using the conservative Satterthwaite
approximation.

Between-group differences in region of interest volumetry
and cognitive performance across the neuropsychological test
battery were investigated using one-way ANCOVA—rank
ordered where parametric assumptions were violated
(Conover and Iman, 1982)—covarying for age, sex and years
in education. Separate linear regression models were used to
assess absolute distance error (averaged per participant across
all trials) and region of interest volumetry, adjusting for age,
sex, years in education and mean path integration performance
per participant group. Analyses were conducted across all
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participants and between MCI + versus MCI�. Bonferroni
correction was used to control for planned multiple compari-
sons. Residuals were visually inspected for violating linear as-
sumptions, leverage and outliers.

The classification ability (MCI from healthy control subjects
or MCI + from MCI�) of the path integration test (using
per-participant averages of each path integration outcome
measure) was compared to reference cognitive tests. All
linear classification models were adjusted for age, sex and
years in education and used k-fold cross-validation (k = 10)
to control for over-fitting (Hawkins et al., 2003). Posterior
probabilities following cross-validation were used to generate
area under the curve (AUC) of the receiver operating charac-
teristic (ROC), as well as optimal sensitivity and specificity.
Pointwise confidence intervals were generated following boot-
strapping with 1000 replications.

All analysis was conducted in MATLAB 2017b (Mathworks,
https://uk.mathworks.com/).

Data availability

Anonymized data are available on request.

Results

Demographics and
neuropsychological testing

No significant differences in age, gender, or years in edu-

cation were observed between all MCI and healthy control

subjects, or between MCI + and MCI� (Table 1).

Following Bonferroni correction with an adjusted � of

0.002, the MCI group as a whole exhibited significantly

more errors in all neuropsychological tests compared to

healthy control subjects (P5 0.002), whereas no difference

between MCI + and MCI� survived multiple comparisons

(P4 0.002).

Immersive virtual reality path
integration task

Of 2295 trials, 775 were excluded (33.77%) because of the

‘out of border’ boundary being reached during the return

Figure 3 Protocol for the segmentation of the whole entorhinal cortex and partial segmentation of its anteriolateral and

posterioromedial subdivisions. Anteriolateral EC (alEC, green) is segmented two slices anterior to the emergence of the hippocampal head

(slice 3). Posteromedial (pmEC, pink) is segmented from one slice anterior to, and one slice posterior from, the uncal apex (slice 10). This partial

approach for EC subdivisions does not encompasses the full extent of the EC but rather reflects the anterior and posterior extremes of the EC

that avoid segmenting the progressive boundary in the absence of consistent landmarks. Correspondingly, all intermediate slices between alEC and

pmEC are segmented as EC (brown), total EC volume is produced by summing all three EC subdivision volumes. Arrow schematic indicates

anatomical plane for 3D segmentation.
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path, leaving 1520 viable trial remaining for analysis, with

no between group difference in ‘out of border’ warnings

were observed (P4 0.05). All participants successfully

completed the path integration task with no reported

nausea or tolerability issues.

Absolute distance error

The MCI group as a whole exhibited significantly larger

absolute distance errors than the healthy control group

[t(1,107) = 3.24, P5 0.01, Fig. 4A], with an estimated

57.33 � 17.87 cm increase in absolute distance error com-

pared to healthy control subjects. MCI + patients exhibited

significantly larger absolute distance errors compared

MCI� patients [t(1,163) = 4.69, P50.001, Fig. 4B], with

an estimated increase of 97.56 � 20.34 cm compared to

MCI�. ACE-R score correlated with absolute distance

errors across healthy control subjects and total MCI pa-

tients [t(1,85) = 2.89, P5 0.01] and across MCI + and

MCI� groups [t(1,26) = 4.01, P5 0.01], with lower ACE-

R scores being associated with greater distance errors.

To assess whether tau and amyloid-b contributed toward

absolute distance error a mixed effect model was performed

with both CSF measures z-scored, controlling for years in

education, sex and age. It was found that the model ex-

plained 64% of the variance (R2) with CSF biomarkers

being significant predictors of absolute distance error.

Absolute distance error was positively correlated with

CSF total tau [t(1,25) = 2.18, P50.05] and negatively

associated with CSF amyloid-b [t(1,25) = �4.39,

P5 0.001; Supplementary Fig. 2].

Neither sex, years in education or age were predictive of

absolute distance error (P4 0.05). An interaction between

CSF tau and CSF amyloid-b was also examined but this

addition neither improved model fit, as indicated by ratio

likelihood testing, or was significant, and thus was not used

in the final analysis.

Similar main effects of diagnosis were observed in pro-

portional linear errors between healthy control subjects and

total MCI group [t(1,95) = 2.27, P5 0.05], as well as be-

tween MCI + and MCI� groups [t(1,87) = 3.09,

P5 0.001], but were not observed in proportional angular

errors (P4 0.05 across both groups; see Supplementary

material). No other fixed effect was associated with any

of the outcome measures of the path integration task.

Effect of return condition on path
integration

No main effects of return condition was observed on ab-

solute distance error between healthy control and total

MCI groups [F(2,1318) = 0.86, P4 0.05; Fig. 5] or be-

tween MCI + and MCI� groups [F(2,384) = 0.56,

P4 0.05]. Interaction terms between return condition and

participant grouping were also included in the analyses to

examine the differential influence of return conditions on

path integration performance for MCI + (compared to

MCI�) and MCI as a whole (compared to healthy control

Figure 4 Graph summarizing the between group differences in path integration performance. Absolute distance error (Euclidean

distance) error in metres (A and B). (A) Group comparison between healthy controls and total MCI and (B) between MCI� and MCI + . Each

marker represents the mean performance across trials of each individual: blue circles = healthy control subjects; black asterisks = MCI without

biomarkers; red triangles = MCI + ; green inverted triangles = MCI�; central grey line = mean; dark grey inner box = 95% CIs; light grey outer

box = 1 standard deviation. *P5 0.05, ***P5 0.001.
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subjects). However, no interaction was observed between

healthy control and total MCI groups [F(2,1325) = 0.83,

P40.05] or between MCI + and MCI� groups

[F(2,386) = 0.55, P4 0.05].

For proportional angular errors, a trend toward an inter-

action between biomarker status (MCI + versus MCI�)

and return conditions B and C was observed

[F(2,398) = 2.93, P5 0.05; Supplementary Fig. 5A], but

this did not survive Bonferroni correction. No other main

effect of return condition or interaction with diagnostic

status was observed for proportional outcome measures

(P40.05, see Supplementary material).

Group differences in MRI volumetry
and association with path integration
performance

Group-level analyses adjusted for age, sex and years in

education, revealed reduced region of interest volumetry

(PCC, hippocampus, EC, alEC and pmEC) in the total

MCI group compared to healthy control subjects

(P50.05), and in the MCI + group compared to the

MCI� group (P5 0.05). However, across healthy control

subjects and total MCI, only hippocampal [F(1,66) = 13.32,

P50.001], EC [F(1,66) = 33.14, P5 0.001], alEC

[F(1,66) = 21.87, P5 0.001] and pmEC [F(1,66) = 12.16,

P50.001] volumes survived the Bonferroni adjusted � of

0.005. No volumetric difference of the isthmus was

observed across all participants or MCI + and MCI�

groups (P4 0.05, see Supplementary Table 2 for full

results).

Associations between regions of interest and path integra-

tion performance were assessed across total MCI and

healthy control groups (Fig 6, purple line) and across

MCI + and MCI� groups (Fig. 6, grey line), adjusting for

age, sex, years in education and average path integration

performance per participant group. Significant negative as-

sociations, surviving the Bonferroni adjusted � of 0.005,

were observed across all participants between absolute dis-

tance errors and both total EC [F(1,64) = 9.60, P5 0.005;

Fig. 6A] and pmEC [F(1,64) = 9.73, P5 0.005; Fig. 6C]

volumes, each with an R2 of 0.38. Across healthy control

and total MCI groups, associations between absolute dis-

tance error, alEC (P = 0.04, Fig. 6B) and hippocampal

(P = 0.03, Fig. 6D) volumes did not survive Bonferroni cor-

rection. Similarly, for MCI + and MCI� group compari-

sons, the association between hippocampal volume and

absolute distance error (Fig. 6D, P = 0.02) did not survive

multiple comparison correction. Neither posterior cingulate

nor isthmus cingulate volumes were significant predictors

of absolute distance error across all participants (PCC:

t = 1.95, P4 0.05; isthmus cingulate cortex: t = 0.35,

P4 0.05) or MCI + and MCI� (PCC: t = 1.47, P40.05;

isthmus cingulate cortex: t = 0.19, P4 0.05).

Additional analyses used multiple linear regression to

examine the strength of EC and pmEC associations with

absolute distance error whilst controlling for both hippo-

campal and alEC volumes across all participants. EC

[F(1,63) = 6.09, P5 0.05) and pmEC [F(1,63) = 6.14, P5
0.03] models were significant, both EC (t = 2.20, P5 0.05)

and pmEC (t = 2.23, P5 0.05) volumes were significant

predictors of absolute displacement error but neither sur-

vive multiple comparison corrections. To examine further

the neural correlates of path integration performance, a

hypothesis-free backward stepwise regression was per-

formed, with absolute distance error as the response

Figure 5 The effect of return condition within participant groups. The effect of return condition on absolute distance error averaged

per participant in each group. Return conditions: green = no environmental change; blue = removal of distal boundary cues; red = removal of

surface detail; open circle = mean; black line = median.
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variable and regions of interest from the Desikan–Killiany–

Tourville atlas (Klein and Tourville, 2012, averaged across

hemispheres and normalized to intracranial volume) as pre-

dictor variables, along with patient status, age, sex and

years in education. Predictor variable inclusion was deter-

mined by the Akaike information criterion and the final

model’s predictor variables were refined by examination

of variance inflation factors in an attempt to minimize col-

linearity. Finally, false discovery rate with a stringent alpha

of 0.01 was used to control for multiple comparisons. The

final model was significant [F(34,36) = 5.79, P5 0.001],

explaining 86.51% (R2) of the variance in absolute distance

error. Following control for multiple comparisons, 20 brain

volumes significantly contributed to the final model and

these are summarized in Supplementary Table 3.

However, stepwise regression can be affected by collinear-

ity and as such the interpretation of these additional region

of interest analyses needs to be made with caution

(Thompson, 1995).

Lastly, given the demonstrated high accuracy of the 4MT

in differentiating MCI due to underlying Alzheimer’s dis-

ease (Moodley et al., 2015) and its predictive subsequent

conversion to dementia (Wood et al., 2016), an ANCOVA

adjusted for age, sex, years in education and average group

performance was used to examine the relationship between

4MT scores and both the pmEC and hippocampus across

all participants and MCI + and MCI�. Across all partici-

pants, the model was significant for both hippocampal

[F(1,64) = 6.54, P5 0.001] and pmEC volumes

[F(1,64) = 5.63, P50.001]; however, neither hippocampal

(t = 1.92, P40.05) or pmEC (t = 0.73, P4 0.05) volumes

were significant predictors of 4MT score. Across

MCI + and MCI� neither hippocampus [F(1,14) = 1.36,

P5 0.05] or pmEC models were significant

[F(1,14) = 1.37, P4 0.05].

Receiver operating curves curves and
classification accuracy

AUC, sensitivity and specificity were estimated using k-fold

cross-validation (k = 10), adjusted for age, sex and years in

education. For the classification of total MCI patients from

healthy control subjects, absolute distance error was asso-

ciated with an AUC of 0.82 [Fig. 7A; 95% confidence

Figure 6 Scatterplots of path integration performance and region of interest volumetry. The relationship absolute distance error

and regions of interest including; EC (A), alEC (B), pmEC (C), whole hippocampus (D), PCC (E) and isthus of the cingulate cortex (F) was

assessed. Least square lines are group specific: grey = across MCI + and MCI�; purple = all participants), *P5 0.005 (Bonferroni adjusted �).
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intervals (CI) = 0.71–0.89], with an error5 157 cm yielding

a sensitivity of 0.84 and specificity of 0.68. By comparison,

the ACE-R was associated with an AUC = 0.86 (CI = 0.79–

0.94), TMT-B (AUC = 0.79, CI = 0.68–0.87), 4MT

(AUC = 0.73, CI = 0.6–0.83) and the delayed conditions

of FCSRT (AUC = 0.73, CI = 0.61–0.85) and Rey-

Osterrieth Figure Recall Test (AUC = 0.72, CI = 0.60–0.83).

Classification accuracy of MCI + from MCI� using ab-

solute distance error was very high, with an AUC of 0.90

(Fig 7B; CI = 0.59–1), and errors5 196 cm yielding a sen-

sitivity and specificity of 0.92 for both. This AUC was con-

siderably higher than that of the comparator reference

cognitive tests: ACE-R (AUC = 0.53, CI = 0.24–0.73),

TMT-B (AUC = 0.57, CI = 0.22–0.69), 4MT (AUC = 0.56,

CI = 0.22–0.72) and the delayed conditions of FCSRT

(AUC = 0.57, CI = 0.22–0.68) and Rey-Osterrieth Figure

Recall Test (AUC = 0.55, CI = 0.22–0.68), indicating a

markedly superior ability of the path integration test to

differentiate MCI + from MCI�.

Discussion
This study demonstrated that performance on a novel im-

mersive virtual reality path integration paradigm, based on

the central role of the entorhinal cortex in navigation, was

impaired in MCI patients compared to healthy controls. In

keeping with the study hypothesis that a navigation task

based upon theories of EC function can differentiate MCI

patients at increased risk of developing dementia, we found

that Alzheimer’s disease biomarker-positive patients drove

the difference in navigation accuracy between MCI patients

and controls. Consistent with the postulated role of the EC

in navigation, and the specific role of the pmEC subdivision

in spatial processing, larger path integration performance

errors were associated with smaller total EC and pmEC

subdivision volumes across all participants. Finally, and

of high relevance for potential diagnostic usage, path inte-

gration performance differentiated MCI biomarker-positive

patients, i.e. those with prodromal Alzheimer’s disease,

from biomarker-negative patients with markedly higher

sensitivity and specificity than a battery of ‘gold standard’

cognitive tests used in clinical and research practice.

The navigational impairments observed in MCI patients

is in line with previous navigation research (Hort et al.,

2007; Laczó et al., 2014; Peter et al., 2018) and with the

sparse literature on real-space path integration in MCI and

Alzheimer’s disease (Mokrisova et al., 2016). Significantly

larger absolute distance errors were observed in MCI +

than in MCI�, with near-total separation of these two

groups on this primary outcome measure, with the latter

group exhibiting comparable performance to healthy con-

trol subjects. Additional analyses revealed that both CSF

total tau and CSF amyloid-b were highly predictive of

Figure 7 ROC plot. Accuracy of path integration task performance for classifying (A) total MCI from healthy control subjects and (B) MCI +

from MCI� patients. Path integration performance is represented by absolute distance error (solid red line). Classification of reference cognitive

tests is represented by dashed lines for comparison. ACE-R (grey), Trail Making Test B (green), 4MT (yellow), Free and Cued Selective Reminding

Test – delayed free recall (blue) and Rey Figure Recall – delayed recall (purple). Asterisk indicates optimal operating point for absolute distance

error.
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absolute distance error, independent of age, sex and years

in education, supporting the notion that path integration

deficits are related to Alzheimer’s disease molecular path-

ology. Collectively, these data suggest that navigational def-

icits are relatively specific to Alzheimer’s disease and

unrelated to deficits in other cognitive domains—such as

attention or episodic memory—that might underlie the

symptomatology of MCI� patients. Secondary outcome

measures suggested that MCI + patients are specifically im-

paired in distance estimation, as evidenced by reduced pro-

portional linear errors, in line with previous research (Hort

et al., 2007), and may relate to tau-related disruption of

grid cell activity (Fu et al., 2017; Stangl et al., 2018), given

the role of grid cells in computing a distance metric of an

environment (Bush et al., 2015) as part of path integration

(McNaughton et al., 2006).

No group differences in performance errors were

observed in response to the removal of boundary or surface

detail cues. In the MCI + group, a trend toward increased

proportional angular errors in response to the removal of

boundary (P = 0.02) and textural (P = 0.08) cues was

observed, but this did not survive multiple comparison cor-

rection. Given that this effect did not reach corrected stat-

istical significance, any inferences need to be made with

caution. Nonetheless it is worth noting that this trend is

consistent with previous research that reported heightened

increased reliance on landmark cues (Kalová et al., 2005)

and heightened rotational deficits in response to the disrup-

tion of optic flow (Kavcic et al., 2006; Mapstone et al.,

2008).

Decreased volume was observed in the MCI group com-

pared to controls in regions of interest chosen for their role

in path integration (total EC; including partial pmEC and

alEC subdivisions, hippocampus, isthmus and posterior cin-

gulate cortex), although only significant differences in hip-

pocampal, total EC, pmEC and alEC volumes survived

correction for planned comparisons. In contrast to previous

research (Dickerson and Wolk, 2013; Long et al., 2018) no

difference in region of interest volumetry across MCI + and

MCI� patients survived correction, though this observation

may be influenced by the sample sizes of these two groups.

However, consistent with our hypothesis, total EC and par-

tial pmEC subdivision volumes were negatively associated

with absolute distance errors across all participants, con-

trasting with the lack of association between this behav-

ioural measure and alEC, hippocampal, PCC and isthmus

volume. Additional analyses demonstrate that both EC and

partial pmEC volumes are better predictors of absolute dis-

tance errors than either hippocampal or alEC volumes.

These findings reinforce previous work suggesting that the

EC is critically involved in path integration, and that path

integration is more dependent on the EC, and specifically

the pmEC subdivision, than on the hippocampus or retro-

splenial cortex (Shrager et al., 2008; Kim et al., 2013). To

our knowledge, this is the first demonstration that reduced

pmEC volumes are associated with impaired path integra-

tion in humans, and is consistent with the analogous role of

the rodent mEC in path integration (McNaughton et al.,

2006; Knierim et al., 2014). These findings complement

previous research that demonstrates a relationship between

the structure and function of the alEC in ageing and indi-

viduals at higher risk of Alzheimer’s disease (Olsen et al.,

2017; Berron et al., 2018) and sheds further light on the

functional differentiation of the EC (Maass et al., 2015).

Significant negative associations were observed between

absolute distance errors and both total EC and pmEC vol-

umes, but not hippocampal volume. While these findings

may support the role of the EC, and specifically pmEC, in

path integration above and beyond the hippocampus, this

interpretation must be applied with caution given that the

significant structure-function association was only observed

across all participants and not solely within the MCI +

group predicted to have EC degeneration. Future studies

with increased sample size will be needed to explore this

further.

Path integration performance differentiated the total MCI

patient group from healthy control subjects with moderate

classification accuracy (AUC 0.82), reflecting the large vari-

ance in performance within the former group. By compari-

son, path integration performance was highly sensitive and

specific for prodromal Alzheimer’s disease, classifying this

group with an accuracy (AUC 0.90) that was markedly

higher than that of reference cognitive tests of episodic

memory, attention and processing speed widely used to

diagnose prodromal Alzheimer’s disease and as outcome

measures in clinical trial.

This work contributes to the growing body of evidence

that spatial behavioural tests may have added value, above

and beyond traditional cognitive tests, in detecting pre-de-

mentia Alzheimer’s disease (Moodley et al., 2015; Allison

et al., 2016; Coughlan et al., 2018; Ritchie et al., 2018).

Furthermore, it demonstrates the potential added diagnostic

value of a test based around theories of EC function. While

this study focused on navigation, given knowledge of the

underlying neural basis and the associated translational

benefits of such an approach, there is evidence that the

transentorhinal and alEC may be affected earlier than the

pmEC by the spread of tau (Braak and Braak, 1991; Khan

et al., 2014). As such, ongoing work involves extension of

VR testing to encompass paradigms relating to object

memory, reflecting transentorhinal and alEC function

(Deshmukh and Knierim, 2011; Olsen et al., 2017;

Berron et al., 2018).

One possible pathological explanation for these data is

that impaired path integration in patients with prodromal

Alzheimer’s disease is due to spread of tau from the trans-

entorhinal cortex to the pmEC and hippocampus and/or

accumulation of amyloid-b pathology in the retrosplenial

cortex. The notion that the behavioural impairments are

related to Alzheimer’s disease pathology is reinforced by

the observation of a significant association between path

integration performance and both CSF total tau and CSF

amyloid-b. The notion that the behavioural impairments

are related to Alzheimer’s disease pathology is reinforced
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by the observation of a significant association between path

integration performance and both CSF total tau and CSF

amyloid-b. Given converging data from studies on the ini-

tial cortical distribution of Alzheimer’s disease molecular

pathology (Braak and Braak, 1991; Bejanin et al., 2017;

Whitwell et al., 2018), with tau deposition in the EC and

amyloid-b in the retrosplenial cortex, the path integration

deficits observed here in prodromal Alzheimer’s disease

may relate to a combination of tau and amyloid-b-related

dysfunction in the EC and retrosplenial cortex, respectively.

Future studies using amyloid- and tau-PET will investigate

these potential associations between molecular pathology

and navigational behaviour in the early stages of

Alzheimer’s disease further, and the relative contribution

of amyloid-b and tau to the observed behavioural deficits.

This study has limitations. The sample size of both

MCI + and MCI� groups was relatively small, and these

results therefore need to be considered initial findings that

require replication in larger scale studies. Another limita-

tion concerns the test space available with the commercial

iVR hardware. The use of a larger space, which will be

possible with next generation iVR, would likely result in

the (i) exclusion of fewer trials; (ii) evaluation of propor-

tional linear errors that is not skewed towards an under-

shoot; and (iii) the compounding of vector computation

errors (angular and linear estimates) that would likely cul-

minate in larger between group performance differences.

Finally, the lack of an anatomical mask for automated

measurement of the retrosplenial cortex, necessitating the

use of proximal anatomical measures (PCC and isthmus

cingulate cortex volumes), limits the specificity of analysis

of the possible contribution of retrosplenial cortex dysfunc-

tion to the path integration impairment in prodromal

Alzheimer’s disease.

In conclusion, this study demonstrates that performance

on an EC-based iVR path integration task is sensitive and

specific for prodromal Alzheimer’s disease, with greater

classification accuracy than that of a battery of current

‘gold standard’ cognitive tests. Given that this test is

based on understanding of EC grid cell activity, these find-

ings have implications not just for early diagnosis but also

for translational Alzheimer’s disease research aimed at

understanding mechanistic links between impaired cell ac-

tivity and behaviour in Alzheimer’s disease. The task used

in this study, combined with analogous navigation tasks in

animal models of Alzheimer’s disease, would help address

the need for outcome measures capable of comparing treat-

ment effects across preclinical and clinical phases of future

treatment trials aimed at delaying or preventing the onset

of dementia.
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