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How does the human brain’s structural scaffold give rise to its intricate functional dynamics? This is a central question in

translational neuroscience that is particularly relevant to epilepsy, a disorder affecting over 50 million subjects worldwide.

Treatment for medication-resistant focal epilepsy is often structural—through surgery or laser ablation—but structural targets,

particularly in patients without clear lesions, are largely based on functional mapping via intracranial EEG. Unfortunately, the

relationship between structural and functional connectivity in the seizing brain is poorly understood. In this study, we quantify

structure-function coupling, specifically between white matter connections and intracranial EEG, across pre-ictal and ictal periods

in 45 seizures from nine patients with unilateral drug-resistant focal epilepsy. We use high angular resolution diffusion imaging

(HARDI) tractography to construct structural connectivity networks and correlate these networks with time-varying broadband

and frequency-specific functional networks derived from coregistered intracranial EEG. Across all frequency bands, we find sig-

nificant increases in structure-function coupling from pre-ictal to ictal periods. We demonstrate that short-range structural con-

nections are primarily responsible for this increase in coupling. Finally, we find that spatiotemporal patterns of structure-function

coupling are highly stereotyped for each patient. These results suggest that seizures harness the underlying structural connectome as

they propagate. Mapping the relationship between structural and functional connectivity in epilepsy may inform new therapies to

halt seizure spread, and pave the way for targeted patient-specific interventions.
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Introduction
Epilepsy is a neurological disorder characterized by recur-

rent, unprovoked seizures. It affects over 50 million sub-

jects worldwide (World Health Organization, 2018) and

will afflict �1 in 26 subjects during their lifetime

(Hesdorffer et al., 2011). The most common subtype is

focal or localization-related epilepsy, in which seizures

arise from a specific region in the brain (French, 2007).

Patients with localization-related epilepsy often experience

uncontrolled seizures despite medication, leading to neuro-

logical and psychiatric co-morbidities, deterioration in

quality of life, and up to an 11-fold increase in mortality

rate (Kwan et al., 2011; Fazel et al., 2013).

Structural brain lesions are considered to be at the core of

the epileptogenic zone in localization-related epilepsy

(Bernasconi, 2017). Indeed, targeted surgical removal of con-

tiguous regions of abnormal brain tissue has high seizure-

freedom rates in drug-resistant epilepsy patients, up to 80%

(Spencer et al., 2005; De Tisi et al., 2011; Hussan et al.,

2012; Wiebe, 2012; Jette and Wiebe, 2013). However, seiz-

ures also may involve recruitment of and spread to multiple,

often distant brain regions, thereby involving distributed

brain networks (Kramer and Cash, 2012; Bernhardt et al.,

2013). As a result, researchers are applying graph theoretical

methods from the rapidly growing field of network neuro-

science to identify brain network abnormalities in epilepsy,

in the hope of finding targets for therapeutic interventions.

In this approach, investigators map whole-brain structural

and functional networks, or ‘connectomes’, by characterizing

connectivity between brain regions based on multi-modal

neuroimaging data (Bullmore and Sporns, 2009; Rubinov

and Sporns, 2010; Bassett and Sporns, 2017). Structural

brain networks are most commonly derived from diffusion

tensor imaging (DTI) tractography (Hagmann et al., 2008).

Functional brain networks are most commonly derived from

correlations in signal fluctuations across multiple recording

sites from modalities such as resting state functional MRI

(Biswal et al., 1995; Salvador et al., 2004), magnetoencepha-

lography (MEG) (Stam, 2004), and EEG (Micheloyannis

et al., 2006). These approaches reveal a wide variety of

network disruptions in epilepsy patients, both structurally

(Raj et al., 2010; Vaessen et al., 2012; Taylor et al., 2015)

and functionally (Pittau et al., 2012; Pedersen et al., 2015;

de Campos et al., 2016; Shah et al., 2019). While still nas-

cent, this work shows promise for clinical applications, as

network-based measures may serve as biomarkers for pre-

dicting seizure onset and spread (Burns et al., 2014;

Khambhati et al., 2016; Jirsa et al., 2017; Proix et al.,

2017), cognitive impairments (Vlooswijk et al., 2011;

Vaessen et al., 2012), and outcome following surgical ther-

apy (Goodfellow et al., 2016; Sinha et al., 2017; Lopes

et al., 2018).

Most studies of epileptic networks focus solely on either

structural or functional connectivity. However, it is com-

monly understood that the two are tightly linked. In fact,

there is great interest in the neuroscience community in

elucidating the relationship between brain structure and

function. Recent evidence shows that structural and func-

tional brain networks are correlated at multiple temporal

and spatial scales, that structural connectivity constrains

functional connectivity, and that functional connectivity

can modulate structural connectivity via mechanisms of

plasticity (Skudlarski et al., 2008; Greicius et al., 2009;

Honey et al., 2009; Rubinov et al., 2009; van den

Heuvel et al., 2009; Zhang et al., 2010; Hagmann et al.,

2010; Hermundstad et al., 2013, 2014; Chu et al., 2015;

Finger et al., 2016).

Given the robust coupling between structure and function

in healthy brains, disruptions in structure-function coupling

can serve as biomarkers of neurological disease, including

epilepsy. For example, Zhang et al. (2011) report that the

degree of coupling between resting-state functional MRI

networks and DTI tractography networks is lower in idio-

pathic generalized epilepsy patients compared with healthy

controls, and is negatively correlated with epilepsy dur-

ation. Using a similar approach, Chiang et al. (2015)

report decreased structure-function coupling in patients

with left temporal lobe epilepsy compared with healthy

subjects. These two studies use resting-state functional

MRI, which characterizes the static, interictal functional

epileptic network. However, little is known about the cor-

relation between structural and functional connectivity

during seizures. How does structure-function coupling

change over the course of seizure evolution? And which

particular connections drive these changes? Clinically, it is

well understood that focal seizures often quickly spread to

distant brain regions, but the relationship of this spread

to underlying structure has not been quantified.

Understanding where seizures are generated and how they

spread has been hampered by sparsely sampled intracranial

EEG and lesion-negative clinical brain images, and yet re-

mains vital for planning surgical treatments for epilepsy.

To address these questions, we studied structure-function

coupling in 45 seizures from nine drug-resistant localiza-

tion-related epilepsy patients undergoing routine evaluation

for epilepsy surgery. To construct time-varying functional

connectivity (FC) networks, we used clinical recordings

from intracranial EEG (iEEG), an invasive method that

captures electrical activity from the brain in the form of

aggregate local field potentials, at high spatial and temporal

resolution (Penfield and Jasper, 1954). To construct struc-

tural connectivity (SC) networks, we used high angular

resolution diffusion imaging (HARDI), an advanced diffu-

sion imaging method that can produce robust tractography

results in regions of crossing white matter pathways (Tuch

et al., 2002). We characterized relationships between these

two modalities across time, frequency, and space. We hy-

pothesized that there would be an increase in structure-

function coupling during the progression from pre-ictal to

ictal states, as seizures spread along structural pathways.

Our findings shed light on the pathophysiological processes

involved in seizure dynamics, which can ultimately inform
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new approaches for clinical intervention. We detail these

investigations below.

Materials and methods

Subjects

We studied nine patients undergoing pre-surgical evaluation
for drug-resistant epilepsy at the Hospital of the University
of Pennsylvania. Inclusion criteria for these patients consisted
of all patients who agreed to participate in our research scan-
ning protocol and allowed their de-identified iEEG data to be
publicly available for research purposes on the International
Epilepsy Electrophysiology Portal (www.ieeg.org, IEEG Portal)
(Wagenaar et al., 2013; Kini et al., 2016). Seizure localization
was determined via comprehensive clinical evaluation, which
included multimodal imaging, scalp and intracranial video-
EEG monitoring, and neuropsychological testing. This study
was approved by the Institutional Review Board of the
University of Pennsylvania, and all subjects provided written
informed consent prior to participating.

Intracranial EEG acquisition

Cortical surface and depth electrodes were implanted in pa-
tients based on clinical necessity. Electrode configurations (Ad
Tech Medical Instruments) consisted of linear cortical strips
and two-dimensional cortical grid arrays (2.3 mm diameter
with 10 mm inter-contact spacing) and linear depths (1.1 mm
diameter with 10 mm inter-contact spacing). Continuous iEEG
signals were obtained for the duration of each patient’s stay in
the epilepsy monitoring unit. Signals were recorded at 500 Hz.
For each clinically identified seizure event, a board-certified
epileptologist precisely annotated the onset time, termination
time, seizure type, and electrodes recording artefact signals.
Seizure onset times were defined by the earliest electrographic
change (Litt et al., 2001). Seizure types were classified using
ILAE 2017 criteria (Fisher et al., 2017) as focal aware (previ-
ously known as simple partial), focal impaired awareness (pre-
viously known as complex partial), or focal to bilateral tonic-
clonic (previously known as complex partial with secondary
generalization). Furthermore, the onset time of bilateral spread
was noted for focal to bilateral tonic-clonic seizures. All anno-
tations were verified and consistent with detailed clinical docu-
mentation. To ensure consistency and validity of the captured
seizures, we discarded seizures that contained substantial arte-
facts in all electrodes, events that were short (515 s), or those
that occurred during sleep.

Image acquisition

Prior to electrode implantation, MRI data were collected on a
3 T Siemens Magnetom Trio scanner using a 32-channel
phased-array head coil. High-resolution anatomical images
were acquired using a magnetization prepared rapid gradient-
echo (MPRAGE) T1-weighted sequence (repetition time = 1810
ms, echo time = 3.51 ms, flip angle = 9�, field of view = 240 mm,
resolution = 0.94 � 0.94 � 1.0 mm3). HARDI was acquired
with a single-shot EPI multi-shell diffusion-weighted imaging
(DWI) sequence (116 diffusion sampling directions, b-values

of 0, 300, 700 and 2000 s/mm2, resolution = 2.5 � 2.5 � 2.5
mm3 resolution, field of view = 240 mm). The same HARDI
sequence was acquired in nine healthy adult control subjects
for the purpose of comparison. Following electrode implant-
ation, spiral CT images (Siemens) were obtained clinically
for the purposes of electrode localization. Both bone and
tissue windows were obtained (120 kV, 300 mA, axial slice
thickness = 1.0 mm).

Region of interest selection

A brain network consists of nodes representing regions of
interest within the brain, and edges representing the strength
of connectivity between these regions of interest. To carry out
direct quantitative comparisons of structural and functional
networks, it was necessary to establish a direct correspond-
ence between functional network nodes and structural net-
work nodes. We therefore determined the location of each
electrode in Montreal Neurological Institute (MNI) space
and assigned each electrode to its nearest structural region
of interest.

Structural regions of interest were defined by an upsampled
version of the Automated Anatomical Labeling Atlas (Tzourio-
Mazoyer et al., 2002), which consisted of 600 roughly equally
sized (region of interest sizes averaging 2.14 � 0.28 cm3) ana-
tomically constrained regions covering the entire brain with
the exception of the cerebellum. We chose this atlas (AAL-
600) because it has regions of interest of the same order of
resolution as iEEG, obeys gross anatomical boundaries, and
has successfully been used in prior studies to evaluate struc-
tural and functional connectivity patterns in the brain
(Hermundstad et al., 2013, 2014).

To determine electrode MNI coordinates, electrodes were
first identified via thresholding of the CT image and labelled
using a semi-automated process. Each patient’s CT and T1-
weighted MRI images were aligned using 3D rigid affine regis-
tration, with mutual information as the similarity metric. The
T1-weighted MRI images were then aligned to the standard
MNI brain using diffeomorphic registration with the symmet-
ric normalization (SyN) method (Avants et al., 2008). The re-
sulting transformations were used to warp the coordinates of
the electrode centroids into MNI space. Co-registrations and
transformations were carried out using Advanced
Normalization Tools (ANTS) software (Avants et al., 2009,
2011), and the accuracy of each step was confirmed via
visual inspection. In our final framework, electrodes served
as nodes of the functional networks and the associated struc-
tural regions of interest served as nodes of the structural
networks.

Structural network generation

Diffusion-weighted images were skull-stripped via the FSL
brain extraction tool and underwent eddy current and
motion correction via the FSL eddy tool (Andersson and
Sotiropoulos, 2016). Next, DWI susceptibility distortions
were mitigated using the structural T1-weighted image as fol-
lows: (i) T1-weighted images were registered to the b0 image
from the DWI scans using FSL FLIRT boundary-based regis-
tration (Greve and Fischl, 2009); (ii) T1-weighted images
were contrast inverted and intensity matched to the DWI
image; and (iii) the DWI scans underwent non-linear
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transformation to the T1-weighted scan (Wang et al., 2017).
Following these preprocessing steps, DSI-Studio (http://dsi-
studio.labsolver.org) was used to reconstruct the orientation
density functions within each voxel using generalized q-
sample imaging with a diffusion sampling length ratio of
1.25 (Yeh et al., 2010). Deterministic whole-brain fibre track-
ing was performed using an angular threshold of 35 degrees,
step size of 1 mm, and quantitative anisotropy threshold
based on Otsu’s threshold (Otsu, 1979). Tracks with length
shorter than 10 mm or longer than 400 mm were discarded,
and a total of 1 000 000 tracts were generated per brain.
Deterministic tractography was chosen based upon prior
work indicating that deterministic tractography generates
fewer false positive connections than probabilistic
approaches, and that network-based estimations are substan-
tially less accurate when false positives are introduced into
the network compared with false negatives (Zalesky et al.,
2010).

Subject-level AAL-600 atlases were generated in DWI
space by applying the previously generated registration
transformations from MNI to T1-weighted space and from
T1-weighted space to DWI space. Finally, structural net-
works were generated by computing the number of stream-
lines connecting each pair of structural regions of interest
identified above. The distribution of mean streamline lengths
between each pair of structural regions of interest for each
patient is illustrated in Supplementary Fig. 1. As the struc-
tural regions of interest were selected based on presence of
electrodes, the range and distributions of mean streamline
lengths were inherently highly dependent on the number
and anatomical locations of electrodes. Streamline counts
were subsequently log-transformed to improve normality of
the distribution, as is common in prior studies (Bonilha
et al., 2015; Wirsich et al., 2016; Park et al., 2017;
Taylor et al., 2018).

Functional network generation

Each seizure event consisted of an ictal period spanning the
time between seizure onset (earliest electrographic change)
and termination, and an associated pre-ictal period of
equivalent duration immediately prior to seizure onset. For
the purpose of subsequent analyses, for each ictal period we
also selected a corresponding interictal period of equivalent
duration at least 6 h away from seizure activity, and a 5 min
postictal period immediately following seizure termination.
Following removal of artefact-ridden electrodes, intracranial
EEG signals for each period were common-average refer-
enced to reduce potential sources of correlated noise
(Ludwig et al., 2009). Next, each period was divided into
1 s non-overlapping time windows in accordance with previ-
ous studies (Kramer et al., 2010; Khambhati et al., 2015,
2016, 2017).

To generate a functional network representing broadband
functional interactions between iEEG signals for each 1-s
time window, we carried out a method described in detail
previously (Khambhati et al., 2017). Namely, signals were
notch-filtered at 60 Hz to remove power line noise, low-pass
and high-pass filtered at 115 Hz and 5 Hz to account for noise
and drift, and pre-whitened using a first-order autoregressive
model to account for slow dynamics. Functional networks
were then generated by applying a normalized cross-

correlation function � between the signals of each pair of elec-
trodes within each time window, using the formula:

�xyðkÞ ¼
argmax

�

1

T

X
t

ðxkðtÞ � xkÞðykðt þ �Þ � ykÞ

�xk
�yk

" #
ð1Þ

where x and y are signals from two electrodes, k is the 1 s time
window, t is one of the T samples during the time window,
and � is the time lag between signals, with a maximum lag of
250 ms. Next, to gain an understanding of the frequency de-
pendence of structural–functional connectivity (SC-FC) rela-
tionships, we generated functional networks across
physiologically relevant frequency bands as described in
detail in a previous study (Khambhati et al., 2016).
Specifically, multitaper coherence estimation (time-bandwidth
product of 5, 8 tapers) was used to compute functional coher-
ence networks for each 1 s window across four frequency
bands: a/y (5–15 Hz), b (15–25 Hz), low-g (30–40 Hz), and
high-g (95–105 Hz). Both broadband and frequency-specific
networks were represented as full-weighted adjacency matrices
for each 1-s window in each period.

Structure-function coupling analysis

To quantify the relationship between structure and function in
the epileptic brain, we computed the Pearson correlation coef-
ficient between the edges of each structural connectivity net-
work and the edges of each broadband functional connectivity
network, followed by Fisher r-z transformation for variance
stabilization (Fisher, 1921). This led to a time series of SC-
FC correlations for each seizure event in each subject. To
understand the frequency-dependence of SC-FC coupling
better, we repeated the same analysis using the frequency-spe-
cific functional networks.

Next, to understand the extent to which the resulting SC-
FC time series evolve similarly within each subject, we com-
puted the Euclidean distances between these time series for all
pairs of seizure events. Importantly, we first time-normalized
the time series for each seizure event to span 200 evenly
spaced time bins (100 pre-ictal and 100 ictal). Next, for
each seizure event, we generated a single vector consisting
of the SC-FC time series for all five frequency bands: broad-
band, a/y, b, low-g, and high-g. Euclidean distances were then
computed between all pairs of vectors, composed of pairs
belonging to the same patient and pairs belonging to different
patients.

Finally, we wished to assess which edges in the structural
network were responsible for the changes in SC-FC correlation
between pre-ictal and ictal periods. We therefore first com-
puted a mean ictal and mean pre-ictal broadband functional
network for each subject by averaging across seizures events
and across windows within each time period. Next, we carried
out a virtual edge resection approach, in which we removed an
edge from the network and computed the change in SC-FC
correlation, �zðiÞ, as follows:

�zðiÞ ¼ N½z� zi� ð2Þ

where z is the SC-FC correlation, zi is the SC-FC correlation
following removal of edge i, and N is the number of edges in
the network. We chose to multiply by N to normalize the
scale of �z across subjects with different numbers of edges.
We performed this calculation for both pre-ictal and ictal
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time periods. Since we were specifically interested in edges

that statistically contribute to the increase in SC-FC correl-

ation during seizures, we defined a measure of contribution,
�ðiÞ, for each edge i in which a structural connection exists

on the increase in SC-FC correlation during seizures as fol-

lows:

�ðiÞ ¼ ½�zictalðiÞ ��zpre-ictalðiÞ� ð3Þ

where �zictalðiÞ and �zpre-ictalðiÞ are the relative changes in SC-
FC correlations following removal of edge i during the ictal

and pre-ictal periods, respectively.
We defined ‘contributors’ of SC-FC correlation during seiz-

ures as structural edges with �zictalðiÞ40 and �ðiÞ40. This is

because we wanted to identify regions that positively con-
tributed to SC-FC correlation ictally, and more so ictally

than pre-ictally. To understand the properties of contributor

edges better, we computed the lengths of both the contribu-

tor edges and non-contributor edges, in terms of both
streamline length and Euclidean distance. The purpose of

this analysis was to determine whether the increased SC-FC

correlation during seizures was due to long- or short-range
connections. The Euclidean distance of an edge was calcu-

lated using the mean voxel coordinates of two regions of

interest connected by that edge. The streamline length of
an edge was calculated using the mean length of all tracts

between the pair of regions of interest connected by that

edge. To understand the relationship between structure-func-

tion coupling and functional seizure spread, for each struc-
turally connected edge i we computed the correlation

between contribution and the change in function edge

weight between ictal and pre-ictal periods.
A summary of our patient-level SC-FC analysis pipeline is

illustrated in Fig. 1.

Characterization of structural
properties in relation to
structure-function changes

We wanted to probe whether there were any factors in pa-

tients’ brain structure, both in terms of global structural con-

nectivity and local microstructure, which might account for the
observed structure-function coupling dynamics. First, to deter-

mine whether global structural network topology was signifi-

cantly different in patients compared to healthy controls, we

generated structural networks as described above in nine
healthy adult subjects. Next, in both groups, we computed

and compared global clustering coefficient, global efficiency,

and small-worldness, network properties that have proven par-
ticularly useful in characterizing brain graph topology and

quantify the brain’s capacity to minimize biological while max-

imizing topological integration (Bullmore and Sporns, 2009;
Bassett and Bullmore, 2017) (see Supplementary material for

equations and further details).
Next, to determine whether seizure spread is affected by

local structure in addition to structural connectivity, we com-

puted DTI-derived microstructural indices for each structural

region of interest and correlated them with the degree of ictal
versus pre-ictal changes in functional connectivity and struc-

ture-function coupling. Specifically, we computed fractional

anisotropy (FA) and mean diffusivity (MD), the two most
commonly studied DTI metrics which quantify the magnitude

and preferred directionality of water diffusion within each

voxel. For each region of interest, we then computed the
mean SC-FC contribution of that region of interest by aver-

aging the contributions of all edges emanating from that

region of interest. Similarly, we computed the mean change

Figure 1 Summary of patient-level SC-FC analysis pipeline. (A) HARDI preprocessing and whole-brain tractography was carried out.

(B) iEEG data were preprocessed and seizures were annotated, with each seizure event consisting of an ictal period and an associated pre-ictal

period of equivalent duration. (C) Regions of interest (ROIs) were selected via a one-to-one spatial correspondence between electrode centroids

and atlas regions. (D) The structural connectivity (SC) network was generated using log-normalized streamline counts between atlas regions of

interest associated with each electrode location. (E) Time-varying broadband functional connectivity (FC) networks were generated for each 1 s

time window by computing correlation between iEEG signals across electrode pairs. Frequency-specific functional connectivity networks were

similarly computed using coherence between iEEG signals across electrode pairs. (F) SC-FC relationships were quantified across time, frequency,

and space (see ‘Materials and methods’ section for details).
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in functional connectivity between ictal and pre-ictal periods
for each region of interest. For each patient, we then correlated
the mean value of each microstructural measure with both the
mean contribution and mean functional connectivity change,
across regions of interest.

Statistical analyses

To determine whether the SC-FC correlations were signifi-
cantly greater than chance, for each 1-s window we generated
a null distribution of correlations via random permutation of
the functional network edges (10 000 permutations). We then
compared the mean SC-FC correlations during ictal and pre-
ictal periods with the null correlations. Next, to determine
whether there was a significant increase in SC-FC correlation
between pre-ictal and ictal periods, we computed the difference
between the mean ictal z and the mean pre-ictal z for each
seizure event. We modelled these paired differences using a
linear mixed effects model with subject assignment as the
random effect, and determined whether the difference was sig-
nificantly greater than zero using the parametric bootstrap
method (1000 bootstrapped samples), which is robust to
small sample sizes (Davison and Hinkley, 1997; Halekoh
and Højsgaard, 2014). To assess whether the findings were
robust to our choice of non-ictal period, we repeated the
above analysis substituting the pre-ictal periods with interictal
periods of equivalent duration that were at least 6 h away from
seizure activity. To further compare findings during pre-ictal
and interictal periods, we also carried out the above statistical
analysis to determine significant differences between mean pre-
ictal z and mean interictal z. Finally, to better understand the
pattern of SC-FC coupling during the early post-ictal period,
we also carried out the above statistical analysis to determine
significant differences between mean ictal z and mean postictal
z. The 5 min postictal period was divided into two subperiods:
one consisting of the first 1 min following seizure termination,
and one consisting of the subsequent 4 min.

To assess the degree of intra-subject similarity of SC-FC
evolution across the pre-ictal and ictal periods, we compared
the between-subject time series Euclidean distances to the
within-subject time series Euclidean distances and tested the
significance of the difference using permutational multivariate
ANOVA (PERMANOVA) (999 permutations) (Anderson,
2017).

To characterize the properties of edges that contribute to the
increase in SC-FC correlation during seizures, we computed
the mean length of all contributor edges and the mean
length of all non-contributor edges for each subject. Edge
length was computed using two metrics: mean streamline
length, and Euclidean distance. We compared the mean con-
tributor and non-contributor edge lengths using a paired t-test.
Furthermore, to assess the relationship between edge contribu-
tion and edge length among the contributor edges, we classi-
fied contributor edges into ‘low’, ‘medium’, and ‘high’
contribution levels for each subject using tertiles. The edge
lengths in these three categories were compared using paired
t-tests. Finally, given prior knowledge that structural connec-
tion weights decrease with Euclidean distance (Kaiser and
Hilgetag, 2004; Lewis et al., 2009; Rubinov et al., 2015;
Donahue et al., 2016), we repeated all analyses after removing
the effect of Euclidean distance from the structural networks
using linear regression. More specifically, we fit a generalized

linear model with the vector of all structural edges as the de-
pendent variable and the vector of Euclidean distances as the
independent variable, and took the residuals. The residuals
were used for the repeat analysis. Given that this study takes
a connectivity-based approach (i.e. focusing on connections/
edges between regions of interest rather than the regions of
interest themselves), this regression approach accounts for
the distance-dependent effects of both the connection weights
and the number of different structural connections. This is
because each region of interest is associated with a number
of different structural connections (i.e. edges), and each edge
is associated with a different weight.

Data availability

De-identified iEEG recordings are available online on the
International Epilepsy Electrophysiology Portal (www.ieeg.
org, IEEG Portal). Our network analysis scripts and associated
visualizations are publicly available at https://github.com/shah-
preya/EpiConn.

Results

Clinical data

Forty-five clinical seizures (mean duration 71 s � 44 s),

were recorded across the nine patients (mean age

40.2 � 11.8; five female). All seizures had focal onset,

and were characterized as focal aware, focal impaired

awareness, or focal to bilateral tonic-clonic. Patient demo-

graphic and clinical details, along with final number of re-

gions of interest, are detailed in Table 1.

SC-FC coupling using broadband
functional connectivity

To assess the overall temporal patterns of SC-FC coupling

changes during seizures, we first quantified SC-FC correl-

ations using broadband functional connectivity networks.

For each individual seizure event, we determined the

degree of SC-FC coupling, as measured by the Fisher-trans-

formed Pearson correlation, z (Fig. 2A). For all seizures in

all subjects, SC-FC coupling was significantly greater than

chance during interictal, pre-ictal and ictal periods

(P5 0.05, permutation-based testing; Fig. 2B). While the

temporal progression of SC-FC changes was subject-specific

(Fig. 2C), there was a consistent increase between pre-ictal

and ictal periods (Fig. 2D). Per-seizure paired differences in

mean z values reveal significantly greater SC-FC correlation

during ictal periods than pre-ictal periods (P = 0.023, linear

mixed effects analysis with subject as random effect). This

effect was maintained when substituting pre-ictal periods

with randomly chosen interictal clips of equivalent duration

at least 6 h away from seizure activity (P = 0.021). It was

also maintained after regressing out the effect of distance

(P5 0.05, Supplementary Fig. 2). Moreover, there were no
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significant differences between pre-ictal and interictal

period SC-FC correlation values (P = 0.70).

Frequency-specific SC-FC analysis

Next, to understand the frequency dependence of the

observed increase in SC-FC coupling during seizures

better, we repeated the SC-FC coupling analysis across

four frequency bands (a/y, b, low-g, and high-g). Similar

to the previous analysis, we found that the extent of SC-FC

coupling was significantly greater than chance at all time

points during pre-ictal and ictal periods (P50.05, permu-

tation-based testing) for all frequency bands (Fig. 3A).

Moreover, while the pre-ictal SC-FC was lower in higher

frequency bands (Fig. 3B), the increase in SC-FC coupling

between pre-ictal and ictal periods was significant across all

frequency bands (a/y: P5 0.05; b: P5 0.05; low-g:

P50.05; high-g: P5 0.05) (Fig. 3B and C). This finding

was upheld after regressing out the effect of distance

(Supplementary Fig. 2). Similar to the findings with

broadband functional connectivity, the findings were con-

sistent when substituting pre-ictal periods with interictal

periods (a/y: P5 0.05; b: P5 0.05; low-g: P5 0.05;

high-g: P5 0.05), and there were no significant differences

between pre-ictal and interictal period SC-FC correlation

values (a/y: P40.05; b: P40.05; low-g: P40.05; high-g:

P40.05) (Supplementary Fig. 3).

We noted that while the increase was significant across

all frequency bands, there were subject-specific frequency-

dependent changes in SC-FC correlation. For example,

Subject 4 exhibited particularly salient increases in

SC-FChigh-g coupling, while Subject 6 had only moderate

increases in SC-FChigh-g coupling but higher increases in

SC-FCb and SC-FClow-g (Fig. 3C and Supplementary Fig.

4). Finally, we characterized the within-subject similarity

of the SC-FC time courses across all frequency bands.

Using Euclidean distance as a measure of dissimilarity, we

determined that the SC-FC time courses were significantly

more similar within-patient than between-patient

(P5 0.001, R2 = 0.50, permutational MANOVA) (Fig.

Figure 2 SC-FC analysis using broadband functional connectivity. (A) Temporal dynamics of SC-FC correlation as measured by Fisher’s

z for one example seizure in one patient, along with permutation-based null distribution of z values (mean � standard deviation). (B) Per-seizure

z-values during interictal, pre-ictal, and ictal periods reveal SC-FC correlations significantly greater than chance across all periods (P5 0.05).

(C) Temporal dynamics of SC-FC correlation across all subjects (mean � standard deviation across seizures in each subject). For visualization

purposes only, time courses were normalized to span 200 evenly spaced time windows (100 pre-ictal and 100 ictal) and smoothed with a 5-

window moving average filter. (D) Per-seizure paired differences in mean z-values reveal significantly greater SC-FC correlation during ictal

periods than pre-ictal periods (P = 0.023). This effect holds when substituting pre-ictal periods with interictal periods (P = 0.021), with no

significant difference between pre-ictal and interictal period SC-FC correlation values (P = 0.70). �P5 0.05.
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3D), indicating that the temporal dynamics of SC-FC cou-

pling is stereotyped in each patient across seizure events.

SC-FC analysis during postictal
periods

To understand whether the observed increase in SC-FC

coupling during seizures persists postictally, we repeated

the SC-FC coupling analysis using iEEG data obtained

from the first 5 min following seizure termination.

Although time courses varied across seizures, we observed

three distinct patterns of postictal SC-FC coupling as fol-

lows: (i) SC-FC coupling persisted, but did not increase, in

the immediate postictal period and subsequently decreased;

(ii) SC-FC coupling increased into the immediate postictal

period and later decreased; and (iii) SC-FC coupling

decreased sharply at or prior to the start of the postictal

period (Fig. 4A). Generally, SC-FC coupling ultimately

decreased during the postictal period, though not always

to the level of SC-FC coupling in the pre-ictal period.

Given the different pattern during the immediate postictal

period (usually up to 1 min following seizure termination),

we separated the postictal period into immediate (Minutes

0–1) and later (Minutes 1–5) subperiods. Per-seizure paired

differences in mean z-values revealed significant decreases

in SC-FC coupling between ictal periods and later postictal

periods across all tested frequency bands, while significant

differences between SC-FC coupling between ictal periods

and immediate postictal (Minutes 0–1) periods occurred

only in a/y and b frequency bands. (P5 0.05, linear

mixed effects analysis with subject as random effect)

(Fig. 4B).

SC-FC subanalysis in focal to bilateral
tonic-clonic seizures

As noted previously, the temporal progression of SC-FC

changes was subject-specific (Figs 2C and 3A). More spe-

cifically, we observed that in patients who experienced

focal to bilateral tonic-clonic seizures (Subjects 1–3), there

was a drop in SC-FC coupling after the initial rise follow-

ing seizure onset. Analysis of the individual SC-FC time

courses in these seizures revealed that the drop corres-

ponded with onset of bilateral tonic-clonic activity (Fig.

5A). Furthermore, quantitative analysis revealed signifi-

cantly greater SC-FC correlation during pre-bilateral

tonic-clonic ictal periods than pre-ictal periods (P50.05),

as well as significantly greater SC-FC correlation during

pre-bilateral tonic-clonic ictal periods than post-bilateral

tonic-clonic ictal periods (P5 0.05) (Fig. 5B). To focus

Figure 3 Frequency-specific SC-FC analysis. (A) Temporal dynamics of SC-FC correlation as measured by Fisher’s z in a/y, b, low-g, and

high-g frequency bands (mean � standard deviation across seizures in each subject, following interpolation to normalize ictal and pre-ictal

durations). (B) Per-seizure z-values during interictal, pre-ictal, and ictal periods (mean � SD) are significantly greater than chance (P5 0.05,

permutation-based testing). (C) The increase in SC-FC correlation between pre-ictal and ictal periods is further illustrated using paired differ-

ences for each individual seizure (P5 0.05, linear mixed effects analysis with subject as random effect). (D) Seizures within subjects evolve

similarly, as evidenced by higher between-patient Euclidean distances between SC-FC correlation time courses compared to within-patient

distances (P5 0.001, R2 = 0.50, PERMANOVA). �P5 0.05.
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on the relationship between structure and function prior to

the onset of generalized hypersynchronous activity, we lim-

ited the ictal periods to the periods prior to bilateral tonic-

clonic onset for the subsequent virtual edge resection

analysis.

Virtual edge resection analysis

Given our finding that SC-FC coupling was significantly

higher during ictal periods compared with pre-ictal periods,

we wanted to identify and characterize the structural edges

that statistically accounted for this increase. After quantify-

ing the contribution �ðiÞ of each edge on the SC-FC cou-

pling, we mapped the contributor edges onto each subject’s

brain (Fig. 6) to facilitate subject-specific characterization

of SC-FC relationships. Furthermore, at the group level, we

determined that contributor edges were predominantly

short-range, as quantified by significantly shorter edge

lengths in contributors compared with non-contributors,

based on both Euclidean distance (P50.05, two-tailed

paired t-test) (Fig. 7A) and streamline distance (P50.05,

two-tailed paired t-test) (Fig. 7B). This finding held indi-

vidually for each subject. Within the contributor edges,

we found within each subject that higher contribution

edges are shorter-range, both in terms of Euclidean distance

(Fig. 7C) and streamline length (Fig. 7D), with significant

differences between low and medium contribution edges

(P5 0.05, two-tailed paired t-test), and low and high con-

tribution edges (P50.05, two-tailed paired t-test). These

findings held following distance regression (Supplementary

Fig. 2). When relating edge contributions to changes in

functional connectivity, we found no significant correlation

(Pearson r = �0.04 � 0.13; P40.05) (Supplementary Fig.

7A). While the edges with the largest changes in functional

connectivity were typically short-range, these edges were

often not the same as those with high contribution; more-

over, many longer-range connections also exhibited signifi-

cant increases in functional connectivity (Supplementary

Fig. 7B cf. Fig. 6).

Global and local structural properties
analysis

We analysed global structural network properties in our

patient population and compared them to those of healthy

controls. We found no significant difference in normalized

clustering, (patients: 11.9 � 1.31; controls: 11.0 � 1.53;

P40.05), normalized efficiency (patients: 0.80 � 0.012;

controls: 0.79 � 0.020; P40.05), or small-worldness (pa-

tients: 9.43 � 0.93; controls: 8.60 � 1.08; P40.05)

(Supplementary Fig. 5). We also correlated microstructural

measures with both nodal SC-FC contribution and nodal

FC change across regions of interest in each subject. We

found no significant correlation between nodal contribution

and mean FA (r = 0.087 � 0.15; P40.05) or mean MD

(r = –0.087 � 0.13; P40.05). Similarly, we found no sig-

nificant correlation between nodal functional connectivity

change and mean MD (r = 0.09 � 0.15; P40.05). There

was a mild but significant correlation between nodal func-

tional connectivity change and mean FA (r = 0.13 � 0.06;

P5 0.05) (Supplementary Fig. 6).

Discussion
The main goal of this study is to characterize the relation-

ship between structural and functional connectivity during

seizure onset and spread. Using network-based analysis of

HARDI and iEEG data, we observe significant structure-

function coupling at rest and a marked increase in this

coupling during the progression from pre-ictal to ictal

states. This finding persists across frequency bands, with

subject-specific levels of frequency-dependent increases.

Furthermore, we present a technique for assessing the

impact of individual structural connections to the observed

ictal increase in structure-function correlation, and

Figure 4 Assessment of SC-FC coupling in postictal peri-

ods. (A) Illustration of broadband SC-FC coupling across pre-ictal,

ictal, and postictal periods, in three example seizures. Each repre-

sents one of three observed distinct patterns of post-ictal SC-FC

coupling: (top) SC-FC coupling persists, but does not increase, in the

immediate postictal period and subsequently decreases, (middle) SC-

FC coupling increases into the immediate postictal period and later

decreases, and (bottom) SC-FC coupling decreases sharply at or

prior to the start of the postical period. (B) Per-seizure paired

differences in mean z-values reveal significant decreases in SC-FC

coupling between ictal periods and later postictal (Minutes 1–5)

periods across all tested frequency bands, with significant differ-

ences between SC-FC coupling between ictal periods and immedi-

ate postictal (Minutes 0–1) periods occurring only in a/y and b
frequency bands. (P5 0.05, linear mixed effects analysis with subject

as random effect). Pre-ictal period bars included for reference.
�P5 0.05.
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demonstrate that the effect is primarily due to short-range

connections. The consistency of findings across seizures

within each patient suggests that the spatiotemporal pat-

terns of structure-function coupling are highly stereotyped.

Our findings shed light on the dynamics of focal epileptic

seizures in relation to underlying structure by demonstrat-

ing that seizure spread is tightly controlled by short-range

structural connections.

Structure-function coupling across
time, frequency and space

We observe greater coupling between structural and broad-

band functional networks during pre-ictal and interictal

periods than expected by chance. This finding is consistent

with studies relating DTI-based structural networks to rest-

ing-state functional MRI-based functional networks in

healthy adults (Skudlarski et al., 2008; Damoiseaux and

Greicius, 2009; Honey et al., 2009; van den Heuvel

et al., 2009; Zhang et al., 2010; Hermundstad et al.,

2013). It is important to note that the functional signals

recorded using iEEG are fundamentally different from those

recorded using functional MRI. While recent studies

suggest that blood oxygen level-dependent (BOLD) signal

fluctuations correlate with slow fluctuations in EEG gamma

power, the exact relationship between functional MRI

(BOLD) signals and electrophysiology has yet to be

resolved (Logothetis et al., 2001; He and Liu, 2008; He

and Raichle, 2009; Ko et al., 2011) Nonetheless, our find-

ing suggests that the tie between structure and function at

rest is robust across diverse measurements of functional

connectivity.

Interestingly, we observe that pre-ictal functional con-

nectivity networks in lower frequency bands have higher

correlation to structural connectivity networks than pre-

ictal functional connectivity networks in higher frequency

bands. This relationship decreases during the ictal period,

with high SC-FC coupling in all frequency bands. Since it is

believed that lower frequencies facilitate long-distance con-

nections in the brain while higher frequencies facilitate

shorter connections (Kopell et al., 2000; Miller et al.,
2007), our findings may suggest a relative shift to short-

range, high-frequency connectivity during seizure gener-

ation. However, this observation could be influenced by

the spatial distribution of electrodes, which tend to be clus-

tered around the putative seizure onset zone, leading to a

bias towards short-range connections within the seizure

Figure 5 Assessment of SC-FC coupling in focal to bilateral tonic-clonic seizures. (A) Illustration of SC-FC coupling in two focal to

bilateral tonic-clonic seizures, one from Subject 1 and one from Subject 3, reveals decrease in SC-FC coupling following bilateral tonic-clonic

(BTC) onset (bilateral tonic-clonic onset indicated by dotted red line). For comparison, SC-FC coupling time course from a focal impaired

awareness seizure in Subject 3 (without bilateral tonic-clonic) does not illustrate the same decrease. (B) In all bilateral tonic-clonic seizures, per-

seizure paired differences in mean z-values reveal significantly greater SC-FC correlation during pre-bilateral tonic-clonic ictal periods than pre-

ictal periods (P5 0.05), as well as significantly greater SC-FC correlation during pre-bilateral tonic-clonic ictal periods than post-bilateral tonic-

clonic ictal periods (P5 0.05). �P5 0.05.

Structure-function coupling in epilepsy BRAIN 2019: 142; 1955–1972 | 1965



generating network. Therefore, we plan to corroborate

these findings in patients with stereo-EEG, an increasingly

popular and less invasive method that records from stereo-

tactically-placed intracranial depth electrodes (Cossu et al.,

2005; Varotto et al., 2012; Luders et al., 2013). In com-

parison to the depth electrodes used to sample the hippo-

campus and amygdala alongside strips and grids in our

study’s patients, stereo-EEG electrodes are more flexible

to allow for stereotactic placement. More importantly, be-

cause of the ability to place stereo-EEG electrodes without

large, highly-invasive craniotomies, stereo-EEG allows for

bilateral electrode placement within multiple deep cortical

structures and overlying cortex, as well as sampling from

multiple non-contiguous lobes (Gonzalez-Martinez et al.,

2013). Therefore, stereo-EEG may allow us to sample

more regions of the brain and capture longer-range

connections.

Despite individual variations inherent to our patient

population, the finding of increased SC-FC coupling

during ictal periods compared with pre-ictal periods is ex-

tremely robust, using both broadband and narrow-band

functional connectivity. We compared SC-FC time courses

from ictal periods to those of immediately pre-ictal periods

to allow for matched pairwise comparisons and to facilitate

visualization along a continuous temporal scale. To ensure

that activity immediately prior to seizure onset is a good

representation of non-ictal activity, we repeated our ana-

lysis after substituting the pre-ictal periods with interictal

periods far away from seizure activity, and attain consistent

results. The rise in SC-FC coupling during seizures indicates

that seizures may rely on the brain’s underlying architecture

during initial seizure spread. We note that in several of

the patients, the rise in SC-FC correlation occurs prior

to the clinically-marked earliest electrographic change

Figure 6 Subject-specific virtual edge resection approach to determine the contribution, s(i), of each structural edge i on the

increase in SC-FC correlation during seizures. Results are shown for an example seizure in a patient with left temporal lobe epilepsy. Only

‘contributor’ edges [�ðiÞ40 and �zictalðiÞ40� are included to highlight edges that are associated with the SC-FC increase, with edge thickness and

colour used to representing magnitude of �ðiÞ.
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representative of seizure onset, suggesting that SC-FC cou-

pling may also be a valuable biomarker for seizure predic-

tion or its early generation.

We observed that the only two bilateral focal epilepsy

patients, Subjects 6 and 8, had the highest Fisher’s z-

values across pre-ictal and ictal periods in all frequency

bands, and highest �z-values in all bands except high

gamma. This observation suggests that the extent of struc-

ture-function coupling changes may be dependent on the

extent of alterations in the underlying seizure network.

However, there are clearly a number of factors that may

be involved, including the location and extent of tissue

involved. Therefore, this observation could be explored in

future larger-scale studies with patients of both bilateral

and unilateral onset, accounting for possible covariates.

We find that the pattern of SC-FC coupling during the

postictal period varies across seizures. In some seizures,

there is an initial persistence or increase in SC-FC coupling

in the immediate postictal period followed by a decrease,

while in some seizures, SC-FC coupling decreases immedi-

ately. While the postictal EEG is often characterized by

slowing and suppression—particularly in focal to bilateral

tonic-clonic seizures—the dynamics of the postictal period

are variable, complex, and poorly understood (Kaibara and

Blume, 1988; Bateman et al., 2019; Marchi et al., 2019).

Additionally, the transition from ictal to postictal is known

to be ambiguous, as the end of a seizure is often not well

demarcated, neither clinically nor electrophysiologically

(Fisher and Engel, 2010). Therefore, our finding of persist-

ence of SC-FC coupling during the first minute following

seizure termination may be a consequence of the imprecise

boundary between seizure and post-seizure. Additionally,

the observation that the degree of postictal SC-FC coupling

is higher than that of the pre-ictal period may be due to the

fact that postictal EEG can take hours to days to return to

baseline (Litt et al., 2001; Fisher and Engel, 2010; So and

Blume, 2010). Further studies should be carried out to

better understand the dynamics of functional connectivity

and structure-function relationships over longer postictal

time scales.

We discover that in focal to bilateral tonic-clonic seiz-

ures, there is a significant decrease in SC-FC coupling

after the onset of bilateral tonic-clonic activity. This finding

is not surprising, given that bilateral tonic-clonic periods

are associated with generalized hypersynchronous neural

activity that is not localized to particular brain regions or

pathways. This finding also supports that the observed SC-

FC coupling increase during seizures relates to seizure

propagation, and is not simply a result of highly synchron-

ous activity.

Of note, the temporal dynamics of SC-FC coupling is

highly consistent between seizures within each patient.

This indicates that seizures may be ‘hard-wired’ in a

sense, and is a macroscopic analogue to the microscale

finding of stereotyped ictal progression (Wenzel et al.,

2017). However, since our dataset consists of a relatively

Figure 7 Relationship between edge contribution and edge length. Findings reveal that contributor edges are shorter-range in terms of

both (A) Euclidean distance and (C) streamline length (P5 0.05, two-tailed paired t-test). Furthermore, there is a trend that edges with higher

contribution are shorter-range, in terms of both (B) Euclidean distance and (D) streamline length, with significant differences between low and

medium contribution edges (P5 0.05, two-tailed paired t-test), and low and high contribution edges (P5 0.05, two-tailed paired t-test).
�P5 0.05.
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small group of adult focal epilepsy patients, with the ma-

jority having temporal lobe epilepsy, these conclusions may

be specific to our dataset and should be confirmed using

larger, more diverse patient populations.

To assess the role of each structural connection on the

rise in SC-FC coupling during seizures, we implement a

virtual edge resection method. Such leave-one-out simula-

tion-based methods have been gaining popularity to probe

the role of individual nodes and edges on overall network

topology (Honey and Sporns, 2008; Alstott et al., 2009;

Rafal et al., 2015; Khambhati et al., 2016). In our case,

we determine the contribution of structural connections to

SC-FC correlation and generate seizure-specific brain maps

of these connections. Group-level analysis reveals that con-

nections with high contribution are predominantly short-

range, in terms of both streamline length and Euclidean

distance. Of note, the distributions of all streamline lengths

(including both contributors and non-contributors) are

skewed to the right, indicating that the majority of struc-

tural edges are relatively short range. This is due to two

phenomena. First, prior studies have demonstrated the

brain consists of a large number of short connections and

few long-range connections to minimize wiring cost while

allowing for efficient communication (Klyachko and

Stevens, 2003; Chen et al., 2006; Hagmann et al., 2007).

Second, since structural connections analysed in this study

are based on electrode locations, and the electrodes are

typically clustered around the putative seizure onset loca-

tion rather than distributed throughout the brain, this leads

to a further bias towards shorter range connections.

Nonetheless, we see that the edges contributing to SC-FC

coupling are statistically shorter than the non-contributors,

and that stronger contributors are even shorter-range, indi-

cating that our findings are not simply due to selection of

local networks. Interestingly, edge contribution was not sig-

nificantly correlated to change in functional connectivity.

This suggests that our finding of edge contribution is not

simply a consequence of functional connectivity changes,

and the relationship between functional seizure spread

and edge contribution is more complex.

We found no significant differences in global structural

network properties between our patient population and

healthy controls. Moreover, we found that the observed

increases in SC-FC coupling from pre-ictal to ictal periods

are not significantly correlated to microstructural properties

such as fractional anisotropy and mean diffusivity. This

could be partly due to our patient population, which con-

sisted primarily of subjects with no clear lesion on MRI

(though several exhibited signs of hippocampal sclerosis

on subsequent pathology). Additionally, these findings sug-

gest that multimodal connectivity-based analysis captures

unique information about seizure dynamics that are not

evident from standard structural image analyses. We plan

to repeat our findings in larger datasets to corroborate our

observations. Furthermore, further studies in MRI-lesional

patient datasets should be undertaken to relate SC-FC

coupling changes to the anatomical location and extent of

structural lesions.

While the connections themselves are short, the locations

of these connections appear distributed across the brain,

including connections that are contralateral to seizure

onset. This suggests that seizure dynamics rely on a distrib-

uted network of locally clustered connections. While fur-

ther analyses and validation are needed, mapping

connections in relation to seizure onset and spread could

ultimately be useful in pinpointing networks for therapeutic

removal via targeted methods such as laser ablation (Willie

et al., 2014) or neurostimulation (Fisher and Velasco,

2014).

Methodological considerations and
limitations

An important but inevitable limitation of this work relates

to the incomplete sampling of the network via iEEG.

Electrode placement is limited by clinical necessity and con-

strained by the boundaries of the craniotomy, in order to

minimize invasiveness and reduce patient morbidity.

Therefore, it is not possible to sample functional connect-

ivity from the entire brain at high resolution time scales

accessible through iEEG. While clinicians aim to place elec-

trodes around putative seizure onset zones, it is possible

that the entire seizure network may not be captured in

certain cases. Recent efforts to map whole-brain iEEG

using recordings from multiple subjects (Betzel et al.,

2017) and to construct models of whole-brain iEEG

within individual subjects (Owen and Manning, 2017)

may help circumvent this issue. Furthermore, while limited

by impedance from the skull and inability to localize sub-

cortical activity, ictal scalp EEG recordings, or ictal MEG

recordings could supplement our intracranial analysis as

both allow for consistent, grid-like spatial sampling with

temporal resolution comparable to iEEG. The feasibility

of such approaches has already been demonstrated in a

recent paper revealing significant overlap between DTI net-

works and scalp EEG functional networks in the interictal

state (Chu et al., 2015), and in early work on ictal MEG.

Another consideration lies in the method of establishing

correspondence between functional network nodes and

structural network nodes. We chose to make the assign-

ment based on anatomical location of the electrode cen-

troids. This decision was based on prior research

demonstrating that the field created by neurons more

than 1 cm away from an electrode contributes minimally

to the recorded signal, and that the weight of contribution

of a brain signal source is inversely proportional to the

square of the distance separating the source from the elec-

trode contact (Morris and Lüders, 1985; Lachaux et al.,

2003). Therefore, it is reasonable to assume that the ma-

jority of signal recorded by an iEEG electrode likely arises

from neighbouring brain tissue. Nonetheless, it is possible

that a strong signal from a remote location can contribute
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the recorded signal. In scalp EEG and MEG studies, source

localization methods are often used to circumvent this issue

by locating signal sources (Cohen et al., 1990; Mosher and

Leahy, 1998). However, while source localization in intra-

cranial EEG has been investigated, it is not commonly used

because of many unknowns, such as the number of iEEG

electrodes needed for reconstruction, the model to be used

for the sources, and the volume conduction properties of

the brain tissue (Lachaux et al., 2003). More generally,

because of the lack of unique solution to the inverse prob-

lem and the wide variety of modelling methods (Plummer

et al., 2008; Zhang et al., 2008; Caune et al., 2014), the

reliability of the methodology should be explored further

prior to incorporating it into our approach.

Our structural network findings are also limited by the

capacity of our imaging methods. While HARDI has

demonstrated superiority over conventional DTI in terms

of its ability to resolve crossing fibres in regions of high

fibre heterogeneity (Tuch et al., 2002), HARDI tractogra-

phy is still only a proxy for true white matter pathways.

Similar to other neuroimaging modalities, it is subject to

partial volume effects and artefacts such as eddy current

and susceptibility distortions (Le Bihan et al., 2006; Assaf

and Pasternak, 2008). Diffusion-based tractography is

documented to recapitulate known pathways types includ-

ing the short and long association fibres linking cortical

gyri, the projection fibre connecting the cortex to lower

portions of the brain, and the commissural fibres linking

the two hemispheres (Mamata et al., 2002), but may not

reconstruct unmyelinated intracortical axons. Furthermore,

streamline count may not be a direct measure of the

strength of anatomical connectivity.

We decided to include medically-refractory patients with

a range of clinical findings (in terms of laterality, lesional

status, and seizure types) in our study, rather than restrict-

ing to a particular subtype epilepsy. Notably, our findings

were robust across patients despite heterogeneity. While we

included one patient with periventricular nodular heteroto-

pia (PVH), a malformation of cortical development, histo-

logical evidence suggests that these patients manifest with

an altered arrangement of fibre tracks and microstructural

abnormalities beyond visible lesions that may displace the

axonal tracts from their expected location (Kakita et al.,

2005; Meroni et al., 2009; Liu et al., 2017). Therefore, in

future work, the anatomical locations of salient structure-

function changes should be analysed carefully in the con-

text of these alterations.

Because of the strong relationship between spatial prox-

imity and structural connection strength, it is not possible

to entirely disentangle the effects of Euclidean distance on

our findings. Given prior work that epileptiform activity

propagates within layer V of the neocortex (Badawy

et al., 2009), it is possible that local functional connections

could partially be attributed to local cortical spreading phe-

nomena rather than white matter propagation along short-

range arcuate fibres. Local functional connectivity could

also be due to measurement of a common source of

signal. Despite these concerns, our finding of higher SC-

FC coupling during seizures hold after regressing out

Euclidean distance from our structural networks. This sug-

gests that SC-FC coupling goes beyond solely distance-

based effects.

Finally, while this study considers only direct structural

connections, functional connectivity in the brain is also par-

tially attributed to indirect structural connections

(Damoiseaux and Greicius, 2009; Honey et al., 2009;

Liang et al., 2017). Future studies could use the property

of communicability (Estrada and Hatano, 2008) to incorp-

orate path lengths of greater than one into the construction

of structural networks while also accounting for the effects

of spatial proximity.

Conclusions
We present a comprehensive approach to understanding the

relationship between structure and function in the epileptic

brain. Our work provides important insights into the struc-

tural underpinnings of seizure dynamics. Our network ana-

lysis scripts, associated visualizations, and data are publicly

available at https://github.com/shahpreya/EpiConn. It is our

hope that by openly sharing our data, code and pipeline

that we can accelerate translating this nascent field of net-

work analysis in clinical epilepsy to help patients.
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