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About one-third of acute ischemic strokes (AISs) have no 
identifiable cause and are labeled cryptogenic.1 Among 

patients with cryptogenic AIS, retrospective studies suggest 
that 5% to 10% will be diagnosed with cancer within 1 to 2 
years after their stroke.2,3 Additionally, a large claims-based 
analysis reported that in the year before cancer diagnosis, AIS 
risk is increased by 59%.4 Therefore, some cryptogenic AISs 
are probably caused or triggered by occult cancer. This hypo-
thesis is supported by numerous reports of cancer presenting 
with cryptogenic AIS.5

Because earlier detection of cancer might translate into 
better outcomes, having a noninvasive biomarker that reliably 

predicts detection of cancer in AIS patients could be useful. 
Previous studies have demonstrated that differential blood 
mRNA expression profiles can distinguish AIS subtypes, hem-
orrhagic versus ischemic stroke, and transient ischemic attack 
versus mimics.6 We hypothesized that cancer-related AIS 
would also have a distinct blood mRNA expression profile.

Methods
Design
This analysis included 40 subjects prospectively enrolled at aca-
demic centers in New York, California, and Alberta, Canada, be-
tween 2009 and 2018. Subjects were divided into 4 groups of 10, 
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including the group of interest, subjects with active solid tumor 
cancer, and AIS. The 3 control groups were subjects with active 
cancer only, AIS only, or vascular risk factors only (VRFC). Subjects 
in the stroke-only group were individually matched to subjects in 
the cancer-stroke group by age stratum (≥65 versus <65 years) 
and sex, whereas subjects in the cancer-only group were individu-
ally matched to subjects in the cancer-stroke group by age stratum 
(≥65 versus <65 years), sex, and cancer type. Subjects in the VRFC 
group were individually matched to subjects in the cancer-stroke 
and stroke-only groups by age stratum (≥65 versus <65 years), sex, 
and several vascular risk factors, including race. In cases when an 
exact match on all vascular risk factors could not be identified, the 
most similar available subject was used for matching. Full eligi-
bility/matching criteria are described in Methods (online-only Data 
Supplement). Participating institutions’ review boards approved this 
study. This study was registered at https://clinicaltrials.gov (unique 
identifier: NCT02604667). All subjects or their surrogates provided 
written informed consent. Study data and materials are available on 
reasonable request.

Sample Processing
Blood was collected in PAXgene tubes (Qiagen). Total RNA was iso-
lated per PreAnalytix protocol. In the stroke groups, blood was drawn 
72 to 120 hours from onset. QuantSeq FWD 3′ mRNA (Lexogen) 
libraries were prepared and globin depleted. Unique molecular identi-
fiers were incorporated to collapse polymerase chain reaction dupli-
cates. Samples were sequenced to an average 7.4 million SE 100 bp 
reads. Data were aligned (STAR 2.5.3c, Hg38, GENCODE 25), and 
gene-level expression was quantified. Reads were quantile normal-
ized after an offset of 0.0001 and log transformation. Genes with ≤10 
reads across all samples were excluded, yielding 12 043 genes for 
analysis.

Analysis
Subject groups were compared using ANOVA in Partek Genomics 
Suite (Partek, Inc). To delineate unique and common expression 
patterns between the cancer-stroke and stroke-only groups, while 
accounting for the contribution of cancer through the cancer-only 
group, the gene-level expression of each subject group was compared 
with the VRFC group or to each other. Genes with a false discovery 
rate–corrected value of P<0.2 (nominal P<0.05) and a fold change 
>1.2 were considered significant. This fold-change criterion was used 
to promote identification of biologically significant gene expression 
level change. Differentially expressed genes were then overlapped to 
determine whether the cancer-stroke group had a distinct expression 
profile. The restricted maximum likelihood method of variance esti-
mates for unbalanced designs and Fisher least significant difference 
contrast method were used to estimate differential gene expression 
between subject groups. For data visualization, we performed unsu-
pervised hierarchical clustering and principal component analysis. 
Ingenuity Pathway Analysis identified overrepresented pathways (see 
Methods in the online-only Data Supplement for details).

Results
Characteristics
Demographic and vascular risk factors were similar between 
groups (Table). In the cancer-stroke group, underlying cancers 
were lung (n=3), breast (n=3), prostate (n=2), pancreas (n=1), 
or ovarian (n=1); adjudicated stroke mechanisms were crypto-
genic (n=5) or cardioembolic (n=5).

Differential Expression Compared 
With VRFC Group
Between the cancer-stroke and VRFC groups, there were 
1797 differentially expressed genes (867 upregulated and 930 

downregulated; Table I in the online-only Data Supplement). 
Principal component analysis and unsupervised hierarchical 
clustering separated most subjects in these groups based 
on their differentially expressed genes (Figure 1A and 1B). 
There were 102 pathways overrepresented (Table II in the 
online-only Data Supplement), including the activation of 
9 signaling pathways (Figure IA in the online-only Data 
Supplement).

Between the stroke-only and VRFC groups, there were 
1197 differentially expressed genes (732 upregulated and 465 
downregulated; Table III in the online-only Data Supplement). 
Principal component analysis and unsupervised hierarchical 
clustering separated most subjects in these groups based on 
their differentially expressed genes (Figure 1C and 1D). There 
were 76 pathways overrepresented (Table IV in the online-
only Data Supplement), including many pathways that we pre-
viously identified as regulated following stroke (Figure IA in 
the online-only Data Supplement).7

Differential gene expression between the cancer-only 
and VRFC groups is described in Results in the online-only 
Data Supplement, Tables V and VI in the online-only Data 
Supplement, and Figure II in the online-only Data Supplement.

Unique Differential Expression in Cancer-
Stroke and Stroke-Only Groups
When overlapping differentially expressed genes from all 4 
groups, there were 1323 uniquely differentially expressed 
genes in the cancer-stroke group, 687 uniquely differen-
tially expressed genes in the stroke-only group, and 342 
differentially expressed genes in common between the 
cancer-stroke and stroke-only groups (Figure IB in the 
online-only Data Supplement; Tables VII through IX in the 
online-only Data Supplement). Figure IC in the online-only 
Data Supplement shows the 10 most significantly overrep-
resented pathways.

Comparison of Cancer-Stroke and 
Stroke-Only Transcriptomes
There were 448 differentially expressed genes between the 
cancer-stroke and stroke-only groups including 205 with 
higher expression in the cancer-stroke group and 243 with 
higher expression in the stroke-only group (Table X in the 
online-only Data Supplement). Principal component analysis 
and unsupervised hierarchical clustering separated cancer-
stroke subjects from stroke-only subjects based on their dif-
ferentially expressed genes (Figure 2A and 2B). Most (n=438) 
of the 448 differentially expressed genes between the cancer-
stroke and stroke-only groups did not overlap with the differ-
entially expressed genes between the cancer-only and VRFC 
groups. These data along with the uniquely overrepresented 
pathways are provided in Figure 2C, Results in the online-
only Data Supplement, and Table XI in the online-only Data 
Supplement.

Expression Patterns According to Stroke 
Mechanism Among Cancer-Stroke Patients
In a post hoc analysis comparing the mRNA expression pat-
terns between the 5 cancer-stroke patients with adjudicated 
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cardioembolic mechanisms and the 5 cancer-stroke patients 
with adjudicated cryptogenic mechanisms, there were similar 
expression profiles with only 15 differentially expressed genes 
between groups.

Discussion
In this prospective pilot study, we found that cancer patients 
with AIS have distinctive blood gene expression profiles as 
compared with stroke-only and cancer-only controls. We 

Table. Subject Characteristics, Stratified by Study Group

Characteristics*
Cancer-Stroke  

(n=10)
Stroke Only  

(n=10)
Cancer Only  

(n=10)
Vascular Risk Factors Only 

(n=10)

Age, y; mean (SD) 63 (12) 67 (15) 59 (18) 61 (11)

Women 6 (60) 6 (60) 6 (60) 6 (60)

Race

    White 7 (70) 10 (100) 7 (70) 7 (70)

    Black 2 (20) 0 (0) 3 (30) 1 (10)

    Other 1 (10) 0 (0) 0 (0) 2 (20)

Time from last known well to blood draw, h (mean±SD) 94 (11) 95 (12) NA NA

Cancer type

    Lung 3 (30) NA 3 (30) NA

    Breast 3 (30) NA 3 (30) NA

    Prostate 2 (20) NA 3 (30) NA

    Pancreas 1 (10) NA 0 (0) NA

    Ovarian 1 (10) NA 1 (10) NA

Adenocarcinoma 10 (100) NA 10 (100) NA

Systemic metastases 9 (90) NA 10 (100) NA

Brain metastases 1 (10) NA 3 (30) NA

Chemotherapy within 30 d 7 (70) NA 8 (80) NA

WBC, count/nL; mean (SD) 7.7 (3.8) 7.0 (2.6) 5.9 (1.9) …†

Platelet, count/nL; mean (SD) 197 (48) 207 (63) 270 (110) …†

Stroke mechanism‡

    Large artery atherosclerosis 0 (0) 1 (10) NA NA

    Small vessel disease 0 (0) 1 (10) NA NA

    Cardioembolic 5 (50) 2 (20) NA NA

    Other 0 (0) 1 (1) NA NA

    Cryptogenic 5 (50) 5 (50) NA NA

NIH Stroke Scale, mean (SD) 4 (3) 1 (2) NA NA

Vascular risk factors

    Diabetes mellitus 2 (20) 0 (0) 2 (20) 1 (10)

    Hypertension 5 (50) 7 (70) 4 (40) 7 (70)

    Hyperlipidemia 2 (20) 6 (60) 1 (10) 4 (40)

    Peripheral artery disease 0 (0) 0 (0) 1 (10) 0 (0)

    Atrial fibrillation 1 (10) 0 (0) 1 (10) 0 (0)

    Coronary artery disease 0 (0) 0 (0) 1 (10) 0 (0)

    Chronic kidney disease 0 (0) 0 (0) 1 (10) 0 (0)

    Prior stroke/TIA 2 (20) 0 (0) 1 (10) 0 (0)

    Smoking history (any) 3 (30) 2 (20) 4 (40) 4 (40)

NA indicates not applicable; NIH, National Institutes of Health; TIA, transient ischemic attack; TOAST, Trial of ORG 10172; and WBC, white blood cell.
*All data are presented as number (%) unless otherwise specified.
†Not performed because samples amenable to blood count calculation were not collected.
‡According to the TOAST classification.
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identified 448 differentially expressed genes that differentiated 
between the cancer-stroke and stroke-only patients, as well as 
hundreds of shared genes/pathways between the 2 groups, 
indicating both common and cancer-specific responses to 
stroke.

Pathways unique to cancer-stroke patients included 
autophagy, IL (interleukin; IL-1, IL-10, and IL-12) signaling, 
ATM (ataxia telangiectasia mutated protein) signaling, base 
excision repair, helper T-cell (Th1, Th2, and Th17) activity, 
phagosome formation, pattern recognition receptors signaling, 
TREM1 signaling, and neuroinflammation signaling. These 
pathways primarily involve inflammation, cancer formation/
progression, transcriptional regulation, cortical circuit plas-
ticity, and the hypoxia response. For instance, ATM is a key 
regulator of signaling cascades that respond to DNA strand 
breaks and thereby functions as a caretaker, suppressing tu-
morigenesis in specific T-cell lineages.8 The base excision 
repair pathway—a target for cancer treatment—was also over-
represented in the cancer-stroke group. Immune responses, 

including helper T-cell activity, play important roles in tumor-
igenesis by enabling immune escape of malignantly trans-
formed cells.9 Additionally, tumors often develop at sites of 
chronic inflammation, and inflammation can promote tumor 
progression and increase thrombotic risk.10 Therefore, mod-
ulation of IL, helper T-cell, and TREM1 pathways are con-
sistent with this. Additionally, major transcriptional regulators 
were differentially expressed between the cancer-stroke and 
stroke-only groups, including CREB1 (cAMP response el-
ement binding protein-1) and SQSTM1 (sequestosome-1). 
CREB1—a CREB transcription factor, which was down-
regulated in the cancer-stroke group versus the stroke-only 
group—controls cortical circuit plasticity and functional re-
covery after stroke; and increased levels of CREB expression 
enhance stroke recovery, while blocking CREB signaling hin-
ders recovery.11 SQSTM1 (p62), which was upregulated in the 
cancer-stroke group versus the stroke-only groups, is a critical 
regulator of the hypoxia response, NF-kB, and TNF (tumor 
necrosis factor) signaling.12

Figure 1. Differential RNA expression compared to the vascular risk factor control group. A and B, Principal component analysis (PCA) and unsupervised hierar-
chical clustering of 1797 differentially expressed genes between the cancer-stroke (CS) and vascular risk factor control (VRFC) groups. C and D, PCA and unsu-
pervised hierarchical clustering of 1197 differentially expressed genes between the stroke-only (SO) and VRFC groups. Orange denotes CS group; gray denotes 
VRFC group; and blue denotes SO group. Red represents high expressed genes; green represents low expressed genes. PC indicates principal components.

D
ow

nloaded from
 http://ahajournals.org by on Septem

ber 14, 2019



Navi et al  Blood mRNA in Cancer-Related Stroke  5

Although limited by a small and heterogenous sample size 
with a large false-positive rate, this study suggests that RNA 
gene signatures in blood obtained 72 to 120 hours after AIS 
onset can discern AIS associated with cancer. As 5% to 10% of 
patients with cryptogenic AIS are diagnosed with cancer soon 
after their stroke,2,3 these data indicate that RNA expression 
profiling might be a useful noninvasive tool to screen these 
patients for cancer. However, before entering clinical use, ex-
ternal validation in a larger cohort is required. Future studies 
should assess how RNA gene profiling can delineate patho-
physiological mechanisms among cancer-stroke patients.
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Figure 2. Comparison of the cancer-stroke and stroke-only transcriptomes. A and B, Principal component analysis (PCA) and unsupervised hierarchical clus-
tering of 448 differentially expressed genes between the cancer-stroke (CS) and stroke-only (SO) groups. Orange denotes CS group; blue denotes SO group. 
Red represents high expressed genes; green represents low expressed genes. C, Overlap between the differentially expressed genes in the CS vs SO groups 
and the cancer-only (CO) vs the vascular risk factor control (VRFC) groups. The table represents the canonical pathways that are significantly overrepre-
sented when comparing CS subjects to SO subjects. IL indicates interleukin; Gαs, G-s alpha subunit; mTOR, mamallian target of rapamycin; PC, principal 
components; and RAN, RAs-related nuclear.
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