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ABSTRACT 

Objective: To evaluate whether orthostatic hypotension (OH) or supine hypertension (SH) is 

associated with brain atrophy and white matter hyperintensities (WMH), we analyzed clinical 

and radiological data from a large multicenter consortium of patients with Parkinson’s disease 

(PD) and dementia with Lewy bodies (DLB). 

 

Methods: Supine and orthostatic blood pressure and structural magnetic resonance imaging data 

were extracted from PD and DLB patients evaluated at eight tertiary-referral centers in the USA, 

Canada, Italy, and Japan. OH was defined as a systolic/diastolic BP fall ≥20/10 mm/Hg within 3 

minutes of standing from the supine position (severe, ≥30/15 mm/Hg) and SH as a BP ≥140/90 

mmHg with normal sitting blood pressure. Diagnosis-, age-, sex-, and disease duration-adjusted 

differences in global and regional cerebral atrophy, as well as WMH were appraised using 

validated semi-quantitative rating scales. 

 

Results: A total of 384 patients (310 with PD, 74 with DLB) met eligibility criteria, of whom 

44.3% (n= 170) had OH, including 24.7% (n= 42) with severe OH, and 41.7% (n= 71) with SH. 

OH was associated with global brain atrophy (p=0.004) and regional atrophy involving the 

anterior-temporal (p= 0.001) and medio-temporal (p=0.001) regions, greater in severe vs. non-

severe OH (p=0.001). The WMH burden was similar in those with and without OH (p=0.49). 

SH was not associated with brain atrophy (p=0.59) or WMH (p=0.72). 

 

Conclusions: OH, but not SH, was associated with cerebral atrophy in Lewy body disorders, 

with prominent temporal region involvement. Neither OH nor SH were associated with WMH.  
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INTRODUCTION 

Orthostatic hypotension (OH), defined as blood pressure (BP) drop ≥ 20/10 mmHg 

(systolic/diastolic) within 3 minutes of standing1, and supine hypertension (SH), defined as 

supine BP ≥140/90 mmHg with normal sitting BP2, are hemodynamic manifestations of 

cardiovascular dysautonomia, commonly associated with Lewy body disorders. It has been 

estimated that 30% of patients with Parkinson’s disease (PD) and 30-70% with dementia with 

Lewy bodies (DLB) are affected by OH and that approximately 40-70% of OH cases are 

complicated by SH3.  

Multiple studies have documented an association between OH and cognitive impairment, 

suggesting that common pathogenic mechanisms might be involved in cognitive and autonomic 

dysfunction or that recurrent episodes of cerebral hypo- and hyper-perfusion might negatively 

impact the cognitive function of patients with Lewy body disorders3–7. These hypotheses are 

supported by small imaging studies showing regional brain atrophy in the insula8 and the 

cholinergic pathways5 and by the assumption that hemodynamic dysfunction might result in 

transient cognitive impairment or chronic cerebrovascular damage reflected by white matter 

hyperintensities (WMH)9–11. 

Using a large multicenter repository of imaging and clinical data, we sought to analyze the 

association of OH and SH with global and regional brain atrophy and with WMH.  

 

METHODS  

We searched the clinical and imaging repositories of a large multicenter consortium constituted 

by eight specialized Movement Disorder and Dementia Centers in the USA (University of 

Cincinnati), Canada (University of Toronto, University of Alberta), Italy (University of Brescia, 

University of Torino, University of Chieti-Pescara, Parkinson’s disease Rehabilitation Centre 

Trescore Balneario), and Japan (Juntendo University, Tokyo).  
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Inclusion and exclusion criteria 

PD and DLB patients meeting all of the inclusion and none of the exclusion criteria listed below 

were enrolled in the study: 

 

Inclusion criteria were 1) clinical diagnosis of idiopathic PD, as per the Movement Disorders 

Society (MDS) criteria12 or DLB, as per the International DLB consortium criteria13; 2) 

standardized orthostatic BP assessment (patient lying supine for at least 5 minutes and then 

standing for 3 minutes); 3) stable dosage of dopaminergic and vasopressor medications for at 

least 4 weeks prior to the orthostatic BP assessment; 4) brain MRI, including T1-weighted and 

T2-weighted sequences acquired at > 1.5 Tesla; 5) availability of MDS-Unified Parkinson’s 

Disease Rating Scale (MDS-UPDRS) section III (motor symptoms)14 or UPDRS score at the 

time of BP assessment; and 6) availability of Montreal Cognitive Assessment (MoCA)15 or Mini 

Mental State Examination (MMSE)16 scores at the time of BP assessment. 

 

Exclusion criteria were 1) non-neurogenic OH, defined as ∆heart rate (HR)/∆systolic BP ratio > 

0.5 bpm/mmHg17; 2) comorbid diabetic neuropathy or other disorders associated with deficits 

within the autonomic nervous system18; 3) non-neurogenic OH due to treatment with 

antihypertensive drugs or any therapy with an effect on BP, such as alpha-adrenergic antagonists 

for prostate disorders; 4) clinical history of acute cerebrovascular disease (ischemic/hemorrhagic 

stroke and/or transient ischemic attack); 5) other neurologic disorders or medical conditions 

potentially associated with cognitive deficits including kidney and liver metabolic diseases19; 6) 

any atypical clinical features lowering the diagnostic certainty of PD or DLB; 7) major 

psychiatric diseases requiring chronic use of typical antipsychotic medications; and 8) history of 

drug or alcohol abuse. 

 

Definition of orthostatic hypotension and supine hypertension  
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BP and HR were evaluated in the sitting, supine (after at least 5 minutes of rest), and standing 

positions. OH was defined as a BP fall ≥ 20 mm/Hg systolic or 10 mm/Hg diastolic within 3 

minutes of standing20 from the supine position, and rated as severe OH if the BP fall was ≥ 30 

mm/Hg systolic or 15 mm/Hg diastolic BP21. SH was defined as supine systolic BP ≥ 140 

mmHg or diastolic BP ≥ 90 mmHg; severe SH as supine systolic BP values of ≥ 180 mmHg or 

diastolic BP values of ≥ 110 mmHg in patients with normal sitting BP2.  

 

Imaging data 

T1-weighted and T2-weighted images were exported in a DICOM format and analyzed in a 

centralized fashion by four independent raters as detailed in the statistical methods.  

Brain atrophy was evaluated in 6 distinct regions (anterior-cingulate; orbito-frontal; anterior-

temporal; fronto-insular; medio-temporal; posterior) on T1-weighted images according to the 

semi-quantitative approach described by Harper and colleagues22 and rated as follows:  0= 

closed sulcus; 1= sulcal opening ; 2= sulcal widening;  3= severe sulcal widening with volume 

loss; 4 = profound volume loss (score 4 applicable only for medial and anterior temporal lobe 

atrophy)22.  

WMH was assessed in 4 distinct regions (periventricular white matter; deep white matter; basal 

ganglia plus internal capsule; and infratentorial white matter) on T2-weighted images and rated, 

according to Scheltens and colleagues23, as follows: 0=no WM lesion; 1=punctiform WM 

lesions; 2=early confluent WM lesions; 3=confluent WM lesions. The final analyses were 

performed by adding the separate scores recorded for regions in left and right hemispheres, 

resulting in scores between 0 and 6 (0 to 8 for temporal atrophy).  

Based on Harper et al., the inter-rater reliability of scales of atrophy ranged from 0.5 to 0.79 for 

different regions with average rater scores for all scales (>=0.73)22. A random sample of 36 

MRIs were preliminary evaluated by the four raters to estimate the intraclass correlation 
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coefficient (ICC), which was deemed acceptable if greater than 0.70 (eTable 1, Data available 

form Dryad, https://doi.org/10.5061/dryad.6q573n5zd). 

 

Clinical data  

The medical records were searched for the following demographic/clinical information within a 

time frame of 3 months from MRI: sex, age, age at disease onset, ethnicity, family history of 

neurological or psychiatric disorders, diabetic neuropathy, hypertension, hypercholesterolemia, 

previous history of hemorrhagic/ischemic stroke or transient ischemic attack, myocardial 

infarction, coronary artery bypass graft, angioplasty or stenting, atrial fibrillation, and 

valvulopathy19. The MDS-UPDRS-III or UPDRS-III score, Hoehn & Yahr (H&Y) stage, and 

MoCA or MMSE score were also collected. A conversion from MMSE to MoCA was applied as 

needed using the Lawton formula24, and the MoCA total score was used as a measure of global 

cognition.  A conversion from UPDRS-III to MDS-UPDRS-III was applied using the formula 

developed by Goetz and coauthors25, when needed. 

Dopaminergic therapies, including levodopa, dopamine agonists, monoamine-oxidase-B 

inhibitors (IMAO-B), catechol-O-methyltransferase inhibitors (I-COMT) were recorded and 

used to calculate the total levodopa equivalent daily dose (LEDD) as per the conversion table 

proposed by Tomlinson and colleagues26. The use of medications for diabetes, hypertension, 

hyperlipidemia, depression, and psychosis was also recorded.  

 

Sample size calculation 

Applying the adjusted difference of 0.53 units of atrophy (95% CI, 0.05–1.02) in subjects with 

and without OH in WMH (15.6 ± 9.6 vs 11±8.2 for total score) reported in previous studies27,28, 

and assuming an equal variance between groups, a sample size of at least 90 OH+ and 90 OH- 

(total=180) was estimated to achieve 80% power for WMH assessment with 1% level of 

significance using a multiple linear regression analysis. The combined coefficient of covariation 
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R2 was assumed to be 20% with covariates. The level of significance was adjusted to 1% due to 

multiple comparisons. Assuming a prevalence of OH as 40% in Lewy body disorders (95% CI: 

23% to 38%) with similar effect sizes as considered for WMH, it was estimated that 350 cases 

would be needed to have more than 80% power to evaluate the effects of OH groups after 

adjusting for diagnosis (PD vs. DLB) on MRI using multiple linear regression analysis. The 

sample size was explored for different OH prevalence scenarios (30% to 60%) using PASS 

(PASS 14 Power Analysis and Sample Size Software (2015). NCSS, LLC. Kaysville, Utah, 

USA, ncss.com/software/pass.).   

 

Statistical analyses 

Demographic variables, clinical characteristics, and vascular risk factors were compared in 

patients with and without OH (subdivided further into OH and severe OH) using 

ANOVA/multiple linear analysis, with study group as main factor, and the χ2 test for continuous 

and dichotomous variables, respectively. Quantitative data were presented as mean +/- standard 

deviation. ANCOVA was used to estimate differences in semi-quantitative scales for the 

assessment of regional cerebral atrophy and WMH (dependent variables) between the three OH 

groups (without OH, OH, and severe OH – independent variables) adjusting for diagnosis (PD 

vs. DLB), age, sex, years of education, and disease duration (covariates). The effect size (mean 

difference and 95% confidence interval) of OH groups on each region of cerebral atrophy and 

WMH was determined using multiple linear regression analysis. In addition, Cohen’s effect size 

was estimated for each outcome in relation with OH groups using multiple ordinary linear 

regression analysis using STATA 15.1 codes. 

The same analysis using t-test and chi square for demographics and ANCOVA for atrophy and 

WMH rating were performed using SH as an independent variable in the group of OH patients 

only. Multiple comparison adjustment using Bonferroni’s correction was applied to the 

significance level (α) for single atrophy regions (α=0.05/6=0.008) and WMH (α=0.05/5=0.01).  
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ANCOVA assumption of homogeneity of regression slopes was verified. Statistical tests were 

performed using Statistical Package for the Social Sciences (SPSS 21.0 for Macintosh, Chicago, 

Illinois, USA). The two-tailed significance threshold was set at 0.016 in post-hoc analyses of 

within group comparisons. 

 

Standard Protocol Approvals, Registrations, and Patient Consents 

This study received Institutional Review Board (IRB)/ethics committee approval at all 

participating centers and was conducted in accordance with Good Clinical Practice and any 

applicable national and local regulations. The General Data Protection Regulation requirements 

for data collection were met. Written informed consent was obtained from all participants. 

 

Data availability 

The data that support the findings of this study are available from the corresponding author, 

upon reasonable request.  

 

RESULTS 

Patients 

A total of 410 patients were initially included in the study. Of these, 6 were excluded due to 

MRI motion artifacts, 8 due to subcortical ischemic strokes (4 without OH, 3 with OH, and 1 

with severe OH), and 12 due to low imaging quality, insufficient for accurate brain atrophy 

rating (Figure 1). Out of the remaining 384 patients (310 PD and 74 DLB), 44.3% (n= 170) had 

OH. Among OH patients, 24.7% (n=42) had severe OH and 41.7% SH (n= 71). PD patients 

were younger (65.8 ± 10.3 vs. 79.1 ± 7.2) and had longer disease duration (9.2 ± 5.3 vs. 6.6 ± 

4.5) and better cognitive scores (MoCA 24.3 ± 2.9 vs. 16.1 ± 5.1) than those with DLB. No 

differences were observed in the OH distribution between PD and DLB (Table 1). 
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Patients with OH had longer disease duration (p=0.02) and higher MDS-UPDRS-III scores 

(p=0.02) compared to patients without OH, with no differences in age, sex distribution, and 

vascular risk factors (Table 2). Patients with SH had more vascular risk factors (hypertension, 

diabetes, dyslipidemia, cardiovascular disease) but similar age, sex distribution, disease 

duration, motor performance, and cognitive impairment than those without SH (Table 2). 

 

OH-associated imaging data 

Age, sex, diagnosis, education, and disease duration adjusted data showed an association of OH 

with both global cerebral atrophy (p=0.004) and regional atrophy involving the anterior-

temporal (p=0.001), and medio-temporal (p=0.001) regions (Table 3 and Figure 2). Post-hoc 

analyses showed greater global atrophy in patients with severe OH vs. patients without OH 

(p=0.006); patients with severe OH showed greater anterior temporal atrophy compared to both 

patients with OH (p<0.001) and patients without OH (p<0.001), and greater medial temporal 

atrophy compared to patients without OH (p=0.002) (Table 4). No differences were observed in 

the global and regional scoring of WMH between patients with OH and those without OH 

(Table 3 and Figure 2).  

 

SH-associated imaging data  

Age, sex, diagnosis, education, and disease duration adjusted data showed no associations 

between SH or severe SH and global cerebral atrophy (p=0.59 and p=0.74, respectively), 

regional atrophy (p≥0.07, or WMH (p≥0.57) (Table 5). 

 

DISCUSSION 

Clinical and neuroimaging data from 384 patients with Lewy body disorders demonstrated that 

OH is associated with global and regional brain atrophy involving the anterior-temporal, and 

medio-temporal regions, more pronounced in those with severe OH. No differences in WMH 
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burden were detected in patients with and without OH or SH. Also, SH was not associated with 

global or regional brain atrophy.  

 

A growing number of studies have reported OH as one of the strongest predictors of cognitive 

outcomes in PD and DLB3,29. Small single-center studies documented increased alpha-synuclein 

cortical and subcortical pathology in patients with OH30, suggesting the association with a 

malignant disease phenotype, potentially worsened by acute and chronic cerebral 

hypoperfusion4,10. Others proposed that the hemodynamic stress due to OH and SH might cause 

chronic damage to the small brain vessels, resulting in WMH, which can contribute to dementia 

in Lewy body disorders11,31. To date, however, no studies have adequately addressed the impact 

of OH and SH on brain structural changes. 

 

Whether repetitive hypotensive episodes contribute to these adverse outcomes through direct 

hypoxic damage of vulnerable areas or are merely associated with a more aggressive clinical 

subtype of Lewy body pathology remains unclear. The possibility exists that chronic hypoxia 

might trigger or accelerate the progression of neurodegenerative mechanisms. Experimental 

studies from aging animals showed that chronic brain hypoperfusion yields synaptic changes, 

metabolic dysregulation, cholinergic receptor loss, protein synthesis abnormalities, and 

visuospatial deficits32,33. In addition, aging animals kept for prolonged periods of time after 

chronic brain hypoperfusion showed a tendency to develop neuronal damage in the hippocampal 

region and temporo-parietal cortex34. In a rat model of Alzheimer disease, chronic hypoxia was 

associated with increased deposition of amyloid β in the frontal cortex and hippocampus, and 

hyperphosphorylated tau in the temporal cortex35. Overall, these findings support the hypothesis 

that chronic hypoxia might interfere with the cellular metabolic pathways already impaired by 

the ongoing neurodegenerative processes, ultimately leading to a faster progression of the 
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neurodegenerative damage. However, the extent to which these pathogenic mechanisms apply to 

PD and DLB remains to be clarified. 

 

The results of our study, adjusted for age, sex, disease duration, education, and vascular 

comorbidities, showed that OH is independently associated with global brain atrophy, more 

prominently in the temporal regions. The involvement of the anterior- and medio-temporal lobes 

is critical, as these regions have been directly associated with the progression of dementia in 

Lewy body disorders36,37. Also, we found that OH has no effect on subcortical WMH burden. 

This finding clarifies a highly controversial point in the literature. A study of 44 PD patients 

evaluated with cardiovascular autonomic testing and brain imaging found a similar WMH 

burden in patients with and without OH, suggesting that OH-associated cognitive deficits could 

not be explained by subcortical vascular disease38. Yet, three other studies based on simple 

bedside BP measurements yielded opposite results28,39,40. These conflicting findings might be 

partly related to the inclusion of patients with non-neurogenic OH, wherein there may be a 

greater role for vascular risk factors19. In this study, we included only patients with neurogenic 

OH and stratified for OH severity and concomitant presence of SH to analyze subcategories of 

patients at potentially higher risk of microvascular damage. Interestingly, we found that neither 

OH nor SH were associated with a significantly higher burden of WMH, which can be explained 

by the fact that WMH require years of chronic vascular shear stress, whereas OH and SH are 

paroxysmal by definition, with acute episodic complications, such as falls21,41,42 and cognitive 

fluctuations43.  

 

Taking advantage of our large dataset, we also explored the impact of SH, which was not 

possible in prior smaller cohorts. Data from patients with chronic essential hypertension suggest 

that SH increases the risk of cardiovascular comorbidities44 and a recent study found an 

association between SH and multi-organ damage in patients with pure autonomic failure, 
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multiple system atrophy, and some cases of PD45. However, in our analysis of 170 Lewy body 

disorders patients with OH, 71 of whom had concomitant SH, we did not find an association 

between SH and brain atrophy or subcortical WMH burden. While we cannot exclude that a 

long-term follow-up analysis of SH patients might reveal signs of cerebrovascular organ 

damage, our findings suggest that SH may have a lower impact on brain parenchyma than 

essential hypertension, possibly because of its paroxysmal rather than chronic nature44. This 

outcome can inform therapeutic protocols for the management of hemodynamic autonomic 

dysfunction in patients with PD and DLB, as the successful treatment of OH often requires 

accepting a higher frequency of SH. Our data seem to suggest that this can be achieved with 

minimal impact on the vulnerable cortical and subcortical structures.  

 

Several limitations should be acknowledged. First, we used semi-quantitative scales for the 

assessment of brain atrophy. Despite extensive validation, these scales remain less sensitive than 

voxel-based morphometry analyses or fully quantitative region of interest analyses, especially 

for the posterior cortical regions. However, this would not be feasible for a retrospective study 

as most clinical brain MRIs do not include a volumetric T1 sequence for such purpose. A 

systematic and prospective acquisition of clinical, hemodynamic, and imaging data has already 

been initiated in selected centers and will be critical to confirm these results. Similarly, the 

collection of biological samples, such as cerebrospinal fluid, will allow for the evaluation of 

biomarkers, which may identify the underlying pathological processes associated with the 

observed neuroimaging findings and evaluate the relationship with Alzheimer’s disease 

copathology46. Second, our observational study design is inevitably prone to selection biases, 

which might have played a role in the observed outcomes. It is possible that the inclusion of 

patients with availability of standardized BP assessments in the supine and standing position 

may have introduced a biased toward the selection of those reporting orthostatic symptoms. In 

fact, the OH prevalence observed in our study (44%) is slightly higher than the average reported 
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in the literature (~30%)47. Third, the lack of extensive cognitive assessments limited our 

analyses to measures of global cognition. More comprehensive cognitive testing and prospective 

follow-up assessments are required to evaluate the impact of OH/SH on specific 

neuropsychological deficits. Fourth, the cardiovascular autonomic assessment was limited to the 

study of BP and heart rate. A more extensive battery of cardiovagal, adrenergic, and sudomotor 

testing will allow distinguishing pathogenic mechanisms involving different components of the 

autonomic nervous system. Finally, the lack of longitudinal assessments precluded the 

possibility of studying the effect of vasopressor treatments on the rate of brain atrophy 

progression48. Clarifying this point will be critical to ascertain the extent to which brain atrophy 

represents a consequence rather than a cause of OH, a question of critical importance to inform 

the development of therapeutic protocols for the management of OH and SH.  

 

Despite the limitations associated with an observational study, our findings support the 

association between OH and not SH with cerebral atrophy, with a more pronounced effect on the 

anterior- and medio-temporal regions. These results are consistent with the known vulnerability 

of the medio-temporal lobe and hippocampus to acute and chronic hypoxia due to cerebral 

hypoperfusion49, and suggest that there may be a direct hemodynamic impact of OH on these 

selected cortical areas3,30,50. Alternatively, the observed atrophy might represent a specific 

phenotype of patients with OH, characterized by widespread progression of Lewy body 

pathology. Future research endeavors will be needed to clarify whether an aggressive treatment 

with vasopressor agents, even at the expense of greater prevalence of SH, may reduce the extent 

of brain atrophy and result in better short- and long-term outcomes. 
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Table 1. Demographic and clinical characteristics of the studied groups.  
Quantitative values are summarized with mean ± standard deviation.  

DLB, dementia with Lewy bodies; MDS-UPDRS-III, Movement Disorders Society Unified 

Parkinson’s Disease Rating Scale; MoCA, Montreal Cognitive Assessment; OH, orthostatic 

hypotension; PD, Parkinson’s disease; TIA; Transient Ischemic attack; VRF, vascular risk 

factors.  

  

 Entire sample PD DLB p 

Count 384 310 74  

Clinical characteristics     

Age, years 68.43 ± 11.08 65.89 ± 10.29 79.12 ± 7.23 0.001 

Sex, female, count (%)  142 (36.9) 116 (37.4) 26 (35.1) 0.78 

Disease duration, years 8.74 ± 5.28 9.17 ± 5.32 6.61 ± 4.36 0.001 

Education, years 10.61 ± 4.24 11.28 ± 3.96 7.80 ± 4.28 0.001 

MDS-UPDRS-III  23.38 ± 12.49 24.09 ± 12.87 20.70 ± 10.32 0.06 

MoCA 21.26 ± 4.34 24.30 ± 2.97 16.11 ± 5.07 0.001 

Vascular risk factors     

Hypertension, count (%) 90 (23.4) 58 (21.6) 32 (43.2) 0.02 

Previous TIA, count (%) 8 (2.1) 4 (1.3) 4 (5.4) 0.05 

Diabetes, count (%) 33 (8.6) 25 (8.1) 8 (10.8) 0.48 

Heart disease, count (%) 49 (12.8) 36 (11.6) 13 (17.6) 0.18 

Number of VRF 0.47 ± 0.74 0.40 ± 0.71 0.77 ± 0.79 0.07 

     

OH, count (%) 170 (44.3) 136 (43.8 %) 34 (45.9%) 0.26 
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Table 2. Clinical and Demographic Features 
 

Clinical characteristics of patients according to presence of OH and SH.  

Quantitative data are presented as mean value ± standard deviation; statistical differences were 

evaluated using ANOVA and t-test for continuous variables (OH and SH subgroups, 

respectively) and chi square for dichotomous variables. 

Post-hoc analyses (significance set with Bonferroni’s correction at α=0.01): # OH- vs. OH+; ∆ 

OH- vs. Severe OH+. 

MDS-UPDRS-III, Movement Disorders Society Unified Parkinson’s disease Rating Scale; 

MoCA, Montreal Cognitive Assessment; OH-, patients without orthostatic hypotension; OH+, 

orthostatic hypotension; Severe OH+, severe orthostatic hypotension; OH+SH-, orthostatic 

 OH- OH+ Severe OH+ p OH+SH- OH+SH+ p 

Count 214 128 42  99 71  

Age, years 68.1 ± 11.1 68.0 ± 11.5 71.2 ± 8.4 0.24 6.9 ± 10.1 71.9 ± 9.6 0.05 

Sex female, count 

(%) 

78 (25.0) 16 (12.5) 19 (45.2) 0.78 25 (25) 10 (14.1) 0.87 

Disease duration, 

years 

7.9 ± 5.4 9.6 ± 4.5 10.3 ± 5.8 0.02 ∆ 9.7 ± 4.9 7.9 ± 5.1 0.82 

Education, years 10.48 ± 4.20 10.78 ± 4.38 10.80 ± 4.09 0.78 11.60 ± 4.08 9.62 ± 4.37 0.003 

MDS-UPDRS-III  21.9 ± 11.5 24.5 ± 13.6 27.5 ± 12.9 0.02 #∆ 22.7 ± 11.2 25.7 ± 11.6 0.10 

MoCA 21.8 ± 15.2 20.8 ± 4.1 20.7 ± 4.1 0.36 22.2 ± 3.27 21.3 ± 3.5 0.21 

Number of VRF 0.52 ± 0.76 0.40 ± 0.69 0.43 ± 0.71 0.32 0.22 ± 0.45 1.10 ± 0.88 0.001 

BP Sys-Supine 130 ± 18 126 ± 19 137 ± 18 0.001#∆ 118 ± 11 151 ± 13 0.001 

BP Sys-Stand 124 ± 19 115 ± 20 107 ± 24 0.001#∆ 107 ± 19 125 ± 18 0.001 

BP-Dias-Supine  78 ± 12 76 ± 11 81 ± 13 0.001∆ 76 ± 11 81 ± 13 0.001 

BP-Dias-Stand  78 ± 14 72 ± 12 68 ± 14 0.001#∆ 76 ± 11 81 ± 13 0.001 
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hypotension without supine hypertension; OH+SH+, orthostatic hypotension with supine 

hypertension; VRF, vascular risk factors.    
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Table 3. Brain Atrophy and Subcortical Vascular Rating   
 

 
 
 

 

Brain 

atrop

hy 

and 

subco

rtical 

vascu

lar 

rating 

of 

white 

matte

r 

hyper

intens

ities 

(WMH) in patients without orthostatic hypotension (OH-), with OH and with severe OH. Data 

are presented with mean ± standard deviation; statistical differences were evaluated using 

ANCOVA adjusted for the effect of age, sex, education, diagnosis and disease duration. For 

single atrophy regions and regional WMH burden, we set the statistical threshold at 0.008 and 

0.01, respectively, after applying a multiple comparison adjustment (α= 0.05/6 = 0.008, and α= 

0.05/5 = 0.01). 

 OH- OH+ Severe OH+ p 

Count 214 128 42  

Brain Atrophy 

Anterior cingulate  1.60 ± 1.60 2.00 ± 1.70 2.19 ± 1.50 0.029 

Orbito-frontal  1.15 ± 1.38 1.59 ± 1.60 1.39 ± 1.34 0.029 

Anterior-temporal 1.68 ± 1.24 1.84 ± 1.13 2.46 ± 0.92 0.001 ∆∗ 

Fronto-insular  2.13 ± 1.53 2.33 ± 1.69 2.92 ± 1.49 0.017 

Medio-temporal 1.72 ± 1.67 1.88 ± 1.90 2.87 ± 1.72 0.001 ∆ 

Parieto-occipital 2.43 ± 1.59 2.39 ± 1.63 2.68 ± 1.44 0.60 

Total atrophy 10.74 ± 6.56 11.9 ± 7.30 14.71 ± 5.15 0.004 ∆ 

White Matter Hyperintensities  

Frontal lobe 1.91 ± 1.68 2.11 ± 1.68 2.54 ± 1.96 0.058 

Parieto occipital 1.80 ± 1.76 1.86 ± 1.89 1.94 ± 1.99 0.82 

Temporal lobe 0.59 ± 1.16 0.50 ± 1.06 0.57 ± 1.07 0.80 

Basal ganglia 0.78 ± 1.26 0.69 ± 1.39 0.77 ± 1.46 0.86 

Infratentorial 0.35 ± 0.88 0.40 ± 1.18 0.57 ± 1.20 0.51 

Total WMH  5.45± 5.33 5.49 ± 5.49 6.40 ± 6.18 0.49 
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Post-hoc analyses (significance set with Bonferroni’s correction at α=0.05/3=0.016): ∆ OH- vs. 

Severe OH+; ∗ OH+ vs. Severe OH+. 

F, F effect size; WMH, white matter hyperintensities visual rating scoring 
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Table 4. Effect size for comparing brain atrophy among groups  

 

Statistical differences were evaluated using multiple linear regression adjusted for the effect of 

age, sex, education diagnosis and disease duration. CI, confidence interval. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Groups 
Mean 

difference 
95%CI p-value Cohen's d 

Anterior-temporal OH- vs. OH+ 0.13 -0.12 0.39 0.308 0.11 

OH- vs. severe OH+ 0.77 0.36 1.18 <0.001 0.64 

OH+ vs. severe OH+ 0.73 0.35 1.12 <0.001 0.68 

Medio-temporal OH- vs.  OH+ 0.17 -0.21 0.55 0.373 0.10 

 

OH- vs. severe OH+ 0.91 0.34 1.47 0.002 0.53 

OH+ vs. severe OH+ 0.78 0.12 1.45 0.021 0.41 

Total atrophy OH- vs.  OH+ 1.36 -0.01 2.73 0.052 0.20 

 

OH- vs. severe OH+ 2.71 0.77 4.64 0.006 0.42 

OH+ vs. severe OH+ 2.05 -0.32 4.43 0.09 0.30 
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Table 5 Brain Atrophy and Subcortical Vascular Rating in OH patients with and without 

SH 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data are presented with mean ± standard deviation; overall statistical differences were evaluated 

using ANCOVA adjusted for the effect of age, sex, education diagnosis and disease duration. 

For single atrophy regions and regional WMH burden, we set the statistical threshold at 0.008 

and 0.01, respectively, after applying a multiple comparison adjustment (α= 0.05/6 = 0.008, and 

α= 0.05/5 = 0.01). OH+SH-, orthostatic hypotension without supine hypertension; OH+SH+, 

 OH+SH- OH+SH+ p 

Count 99 71  

Brain Atrophy    

Anterior cingulate  2.19 ± 1.74 1.82 ± 1.47 0.07 

Orbito-frontal  1.53 ± 1.70 1.57 ± 1.27 0.34 

Anterior-temporal 1.85 ± 1.19 2.16 ± 0.97 0.41 

Fronto-insula  2.38 ± 1.71 2.62 ± 1.57 0.75 

Medio-temporal 1.99 ± 1.95 2.30 ± 1.86 0.64 

Parieto-occipital 2.38 ± 1.61 2.59 ± 1.52 0.94 

Total atrophy 12.32 ± 7.51 13.03 ± 6.09 0.59 

White Matter Hyperintensities     

Frontal lobe 2.08 ± 1.84 2.42 ± 1.63 0.92 

Parieto-occipital 1.72 ± 194 2.11 ± 1.85 0.57 

Temporal lobe 0.49 ± 1.08 0.58 ± 1.05 0.99 

Basal ganglia 0.61 ± 1.43 0.86 ± 1.37 0.65 

Infratentorial 0.35 ± 1.03 0.57 ± 1.27 0.74 

Total WMH  5.24 ± 5.89 6.49 ± 5.27 0.72 

 

Copyright © 2021 American Academy of Neurology. Unauthorized reproduction of this article is prohibited 

 



 

 

orthostatic hypotension with supine hypertension; WMH, white matter hyperintensities visual 

rating scoring.   
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FIGURES CAPTURE AND LEGEND 

 

Figure 1. Study Flowchart  
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Figure 2. Atrophy and WMH rating according to OH and SH subgroups 

 

OH, orthostatic hypotension; SH, supine hypertension; WMH, white matter hyperintensities  

Post-hoc analyses (∗ significance set with Bonferroni’s correction at α=0.016). 
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