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Identifying genetic risk factors underpinning different aspects of Alzheimer’s disease has the potential to provide important insights

into pathogenesis. Moving away from simple case-control definitions, there is considerable interest in using quantitative endophe-

notypes, such as those derived from imaging as outcome measures. Previous genome-wide association studies of imaging-derived

biomarkers in sporadic late-onset Alzheimer’s disease focused only on phenotypes derived from single imaging modalities. In

contrast, we computed a novel multi-modal neuroimaging phenotype comprising cortical amyloid burden and bilateral hippocam-

pal volume. Both imaging biomarkers were used as input to a disease progression modelling algorithm, which estimates the

biomarkers’ long-term evolution curves from population-based longitudinal data. Among other parameters, the algorithm com-

putes the shift in time required to optimally align a subjects’ biomarker trajectories with these population curves. This time shift

serves as a disease progression score and it was used as a quantitative trait in a discovery genome-wide association study with

n = 944 subjects from the Alzheimer’s Disease Neuroimaging Initiative database diagnosed as Alzheimer’s disease, mild cognitive

impairment or healthy at the time of imaging. We identified a genome-wide significant locus implicating LCORL (rs6850306,

chromosome 4; P = 1.03 � 10�8). The top variant rs6850306 was found to act as an expression quantitative trait locus for

LCORL in brain tissue. The clinical role of rs6850306 in conversion from healthy ageing to mild cognitive impairment or

Alzheimer’s disease was further validated in an independent cohort comprising healthy, older subjects from the National

Alzheimer’s Coordinating Center database. Specifically, possession of a minor allele at rs6850306 was protective against conver-

sion from mild cognitive impairment to Alzheimer’s disease in the National Alzheimer’s Coordinating Center cohort (hazard

ratio = 0.593, 95% confidence interval = 0.387–0.907, n = 911, PBonf = 0.032), in keeping with the negative direction of effect

reported in the genome-wide association study (bdisease progression score = �0.07 � 0.01). The implicated locus is linked to genes

with known connections to Alzheimer’s disease pathophysiology and other neurodegenerative diseases. Using multimodal imaging

phenotypes in association studies may assist in unveiling the genetic drivers of the onset and progression of complex diseases.
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Introduction
Alzheimer’s disease is the most common cause of dementia,

affecting 46.8 million people worldwide (Prince et al.,

2015). The pathophysiology of Alzheimer’s disease and

its genetic drivers have been widely studied in recent

years. The "4 allele of the apolipoprotein E gene

(APOE4) is the strongest known common genetic risk

factor for sporadic late-onset Alzheimer’s disease

(Saunders et al., 1993). Further genetic risk factors have

been identified through genome-wide association studies

(GWAS) in case-control datasets, with recent studies com-

prising 74 000 subjects (Lambert et al., 2013). However,

case-control studies in a disorder where the prodromal

stage spans decades neglect the fact that many participants

labelled as controls may be future cases and therefore

reduces statistical power of the study.

An increasingly popular alternative to genetic studies in

case-control settings is the genome-wide screen for effects

on quantitative disease biomarkers. These biomarkers,

often referred to as endophenotypes, are believed to

better reflect the underlying disease processes and also

enable studies investigating the genetic influences on disease

development in the prodromal phase. In the context of

Alzheimer’s disease, various quantitative traits have been

investigated. A considerable proportion of these studies

focused on biomarkers derived from brain image analysis,

such as grey matter density in several structures from MRI

(Potkin et al., 2009; Shen et al., 2010), voxel-wise measures

of brain atrophy (Stein et al., 2010), and cross-sectional

and longitudinal amyloid burden from PET (Ramanan

et al., 2014, 2015). Other studies have investigated

plasma- or CSF-based biomarkers, which include levels of

amyloid-b1-42, total and phosphorylated tau, and apolipo-

protein J (Cruchaga et al., 2013; Deming et al., 2016;

Piccio et al., 2016). These efforts have led to the identifi-

cation of additional genetic risk factors, such as IL1RAP

(Ramanan et al., 2015), which remained concealed even in

large genome-wide case-controls studies.

Complex diseases, such as Alzheimer’s disease, are asso-

ciated with sequences of changes in multiple disease-specific

biomarkers. However, disease progression from the preclinical

to advanced stage can take decades, and different biomarkers,

reflecting different pathologies may show dynamic changes at

specific disease stages (Jack et al., 2010, 2013). Thus, testing

each biomarker independently in genetic studies provides in-

sights into one specific disease-related process (i.e. atrophy,

amyloid deposition, neurofibrillary tangles formation) in a

limited time window. Recent methodological developments

enable the estimation of data-driven models of disease pro-

gression involving multiple biomarkers (Donohue et al., 2014)

and therefore provide more robust disease staging of patients.

The approach by Donohue et al. (2014) models continuous

long-term biomarker evolution from short-term longitudinal

data. In contrast, the discrete event-based model by Fonteijn

et al. (2012) focuses on the order in which biomarkers

become abnormal. Both approaches provide an integrated

view on the wide range of biomarker changes and aim to

accurately stage patients and to predict future disease

progression. For this reason, we introduce the disease progres-

sion score (DPS) as a quantitative phenotype for genetic

association studies. DPS provides an integrated view on

pathophysiological changes during disease development and

potentially provides novel genetic insights, which are different

from the ones gained by studying single biomarkers. DPS

effectively collapses multiple sources of information and

multiple time points into a single metric, and is therefore

multi-modal by design. The rationale behind DPS as pheno-

types is 2-fold: DPS enables multi-phenotype analyses, and

also incorporates multiple time points for each biomarker,

so as to have an holistic perspective of the patient’s disease

history. This is something that existing multivariate analysis

tools, such as MV-Plink (Ferreira and Purcell, 2009),

SNPTEST (Marchini et al., 2007), BIMBAM (Servin and

Stephens, 2007) or MultiPhen (O’Reilly et al., 2012), are un-

able to achieve, because they only allow for the combination

of P-values from the testing of multiple biomarkers at the

same time point in a cross-sectional setting.
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In this work we present the first GWAS of an Alzheimer’s

disease DPS derived from two imaging modalities

[T1-weighted MRI and amyloid PET (18F-florbetapir)] on

a large cohort from the ADNI database (Jack et al.,

2008). We investigated the DPS properties as an endophe-

notype and compared GWAS results to single-modality

cross-sectional biomarkers. We also compared association

strengths to genome-wide polygenic risk scores across

phenotypes. Lastly, we investigated our GWAS results in

the National Alzheimer’s Coordinating Center (NACC)

database, to assess their effect on the risk of conversion

from healthy ageing to mild cognitive impairment (MCI)

or Alzheimer’s disease.

Materials and methods
Data used in the preparation of this article were obtained from
the ADNI database (http://adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary
goal of the ADNI has been to test whether serial MRI, PET,
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of
MCI and early Alzheimer’s disease. For up-to-date information,
see www.adni-info.org.

Diagnosis

Diagnosis at the time of the first florbetapir PET scan was used
in subsequent analyses. Diagnostic categories were healthy con-
trol, subjective memory complaints, early MCI/late MCI and
Alzheimer’s disease. For the association analysis with polygenic
risk scores (see ‘SNP effect on risk of conversion’ section),
the latest diagnosis available in ADNI was used (healthy con-
trol/MCI/Alzheimer’s disease, date accessed 05/11/2015).
Furthermore, diagnosis at baseline florbetapir PET scan and
latest diagnosis were compared to define clinical progression
(i.e. stable, conversion or reversion) for each subject.

Genotyping and imputation

At the time of this study single nucleotide polymorphism (SNP)
genotyping data were available for 1674 subjects across all
ADNI phases. Genotyping was conducted using three different
platforms: Human610-Quad, HumanOmniExpress and Omni
2.5M (Illumina) (Saykin et al., 2010). The proportions of
study participants genotyped with each platform and their
relationship with diagnosis at baseline can be found in
Supplementary Table 1.

Autosome imputation and quality control

Following recommendations by Roshyara et al. (2014),
pre-imputation autosomal SNP filtering based on call rate was
omitted. On the subject level we performed the following qual-
ity control steps: (i) sex checks were conducted on the original
genotype files separately by platform and reported no mis-
matches; (ii) we computed subject-level call rate on the original
genotype files separately by platform and reported no subject
missing more than 10% genotypes; (iii) relatedness analysis was

performed on genotyped SNPs before imputation: the Genetic
Relationship Matrix (GRM) was computed in PLINK v1.9
(Chang et al., 2015) and pruned at 0.1, a threshold lower
than the coefficient of relatedness for first cousins (via the –
rel-cutoff 0.1 command). On the SNP level we conducted
basic checks to ensure compatibility with the reference panel
used for imputation. Specifically, we used a tool by W.
Rayner (http://www.well.ox.ac.uk/�wrayner/tools/), to check
SNPs for strand consistency, allele names, position, Ref/Alt as-
signments and minor allele frequency (MAF) differences with
the reference panel. The Sanger Imputation Server (https://im-
putation.sanger.ac.uk/) was used with SHAPEIT for phasing
(Delaneau et al., 2011), Positional Burrows-Wheeler
Transform (Durbin, 2014) for imputation and the Haplotype
Reference Consortium version 1.1 (McCarthy et al., 2016) as
reference panel. Data from the three different genotyping plat-
forms were imputed separately. Quality control was performed
on genotyped and imputed SNP calls with PLINK. Multi-allelic
variants and SNPs with imputation INFO score 5 0.3 were
removed. Following the initial quality control, genotypes from
the three platforms were merged. Genotype calls with posterior
probability 5 0.9 were set to missing. Next, SNPs with MAF
5 5%, genotyping rate 5 90%, or deviation from Hardy-
Weinberg equilibrium (P5 5.7 � 10�7) were excluded.
Finally, subjects missing 10% or more of the genotypes were
removed.

SNPweights (Chen et al., 2013) was used to infer genetic an-
cestry from genotyped SNPs. Ancestry adjustment in the ADNI
cohort was implemented in two steps: (i) subjects were compared
against a reference panel comprising Central European, Yoruba
Africans and East Asian from HapMap 3 (Altshuler et al.,
2010), and native Americans from Reich et al. (2012). Subjects
with 4 80% of Central European genetic ancestry were kept
(157 subjects removed); (ii) SNPweights was used together with
a reference panel from the Framingham Heart Study (Dawber
et al., 1951) comprising north-western Europeans, south-eastern
Europeans and Ashkenazi Jewish in order to compute two prin-
cipal components of population structure to be used in the fol-
lowing association tests (Supplementary Fig. 1).

X chromosome variants

Variants on the X chromosome underwent recommended pre-
imputation quality control provided with the X-wide analysis
toolset (XWAS version 1.1) (Gao et al., 2015) using the follow-
ing parameters: exclusion of genotype calls with MAF 5 5%,
missingness rate 4 10%, deviation from Hardy-Weinberg equi-
librium with P5 0.05 (Bonferroni corrected); exclusion of sam-
ples with 410% missing genotypes and high relatedness (GRM
off-diagonal relatedness coefficient 4 0.1). At the time of manu-
script preparation, the Sanger server did not support imputation
of X chromosome variants. Thus, we applied an in-house imput-
ation pipeline for this task, using the 1000 Genomes Project data
as a reference panel (Durbin et al., 2010), SHAPEIT (Delaneau
et al., 2011) for phasing and IMPUTE2 for imputation
(Marchini and Howie, 2010). Pseudo-autosomal regions were
excluded, and the 1000 Genomes Project panel without
pseudo-autosomal regions was used for imputation. Post-imput-
ation quality control was performed with XWAS applying the
following exclusion criteria: imputation INFO score 5 0.3;
MAF 5 5%; genotyping (or imputation) rate 5 90% per geno-
type; deviation from Hardy-Weinberg equilibrium with P50.05
(Bonferroni corrected).
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Image processing

Cortical amyloid burden

At the time of this study, 2034 preprocessed longitudinal
18F-florbetapir PET scans for 1089 subjects were available in
the ADNI database (date accessed 24/03/2016). Preprocessing
of florbetapir PET scans in ADNI has been described in detail
elsewhere (Jagust et al., 2010). Briefly, four 5-min frames
were acquired 30–60 min post-injection; dynamic frames were
co-registered to the base frame image, averaged, reoriented into
a standard space (voxel grid size 160 � 160 � 96, voxel size
1.5 � 1.5 � 1.5 mm3), and smoothed down to the lowest reso-
lution available in ADNI (8 mm full-width at half-maximum uni-
form isotropic).

To compute the standardized uptake value ratio (SUVR),
information from structural magnetic resonance scans was
used. A total of 1931 preprocessed T1-weighted magnetic

resonance scans (voxel size 1 � 1 � 1.2 mm3) were down-

loaded for the same subjects. Details about the magnetic res-
onance preprocessing can be found in Jack et al. (2008). Each

florbetapir PET scan was time-matched to the closest-in-time

magnetic resonance scan. However, because of missing concur-

rent MRI scans for �100 individuals, one or more florbetapir
PET scans were time-matched to the same magnetic resonance

scan. Figure 1 depicts a schematic of the implemented image

processing pipeline. The GIF algorithm (Cardoso et al., 2015)
and the Aladin algorithm implemented in NiftyReg (Ourselin

et al., 2001) were used for segmentation and registration, re-

spectively. PET-T1 registrations were visually assessed to
ensure correct alignment.

SUVRs were computed as a measurement of cortical amyloid

deposition for each subject and time point. The SUVs were

computed as the weighted sum of the florbetapir PET signal
intensities with weights corresponding to voxel-wise cerebral

Figure 1 Image processing pipeline for the amyloid load computation. GIF was used to obtain a probabilistic segmentation of the

T1-weighted scans into background/skull, grey matter, white matter, CSF, subcortical structures, brainstem/pons and cerebellar nuclei. Each

T1-weighted scan was rigidly registered to the closest-in-time florbetapir PET scan using the Aladin algorithm; a cubic spline interpolation scheme

in two steps was used to resample the warped T1 image to the space of the closest-in-time lower-resolution PET. The GIF segmentations were

resampled to the space of the PET scan, to define two key regions: (i) a cortical target region excluding the cerebellar grey matter; and

(ii) a composite reference region comprising white matter, whole cerebellum, brainstem and pons, as proposed by Landau et al. (2015).
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grey matter probability. The SUVR is then defined as the SUV
in the cortical region divided by the SUV in the reference
region. The probability-weighted sum to compute SUVs con-
trols for partial volume effects. A composite reference region
comprising white matter, whole cerebellum, brainstem and
pons was used (Landau et al., 2015). The SUVR cut-off used
to determine amyloid status was obtained by transforming the
value of 0.79, as recommended by Landau et al. (2015) by
linear regression, yielding a value of 0.7585.

Hippocampal volume

Hippocampal volume longitudinal measurements for ADNI
was performed by N. Schuff and colleagues at UCSF using
FreeSurfer version 4.3 (Fischl et al., 2002) and accessed
through the ADNI website (date accessed 05/11/2015).
Hippocampal volumes were normalized by dividing by total
intracranial volume.

Disease progression modelling

The GRACE algorithm (Donohue et al., 2014) was used for
modelling disease progression curves from short-term longitu-
dinal individual trajectories of imaging biomarkers. Briefly,
GRACE is based on self-modelling regression, which assumes
that the curves to be fitted share a common shape, e.g. a sig-
moid in Alzheimer’s disease (Jack et al., 2013). GRACE itera-
tively applies regression splines to fit the following model:

Yij tð Þ ¼ gj t þ � i

� �
þ �0ij þ �1ijt þ "ij tð Þ: ð1Þ

where Yij(t) is the value of biomarker j for subject i at time
t, gj is assumed to be a monotone function, �0ij and �1ij are a
random intercept and slope, respectively, allowed for each
subject, "ij(t) is the fitting residual, and �i is an unknown
subject-specific parameter. For each subject � i is estimated as
the shift in time required to optimally align the subjects’ bio-
marker trajectories with the estimated population long-term
progression curves. Once all subjects have been aligned, the
population curves are re-estimated and a new set of � i is
computed with respect to the updated population curves.
This process is iterated until convergence. We utilise the
final � i parameters as a continuous DPS. The DPS provides
an estimate, based on the observed biomarker values, of how
advanced in the disease process a subject is compared to the
average of the cohort. The curves are all centred at t = 0, thus,
individuals with negative time shift, i.e. residing on the left
plateau of the sigmoid, are likely to be labelled as controls.
Conversely, highly abnormal values for the biomarkers place
a patient further in time on the standardized population tra-
jectory, approaching the right plateau of the sigmoid
(Supplementary Fig. 2). The DPS is computed by jointly con-
sidering the progression curves for all biomarkers. Thus, it
natively incorporates information derived from different ima-
ging modalities and renders it effectively as a multi-modal
imaging-derived phenotype.

Florbetapir SUVR and hippocampal volumes were used as
input for GRACE, after being Z-normalized with respect to
healthy controls in the cohort:

Zij ¼
Yij � �j

�j
ð2Þ

where Yij is the value of the j-th biomarker for the i-th subject,
and �j and �j are the mean and standard deviation of the j-th
biomarker among the healthy controls (see above), respect-
ively. This Z-score-based measure ranks the different bio-
markers according to disease severity with respect to healthy
controls. The independent variable for the fitting procedure
was time from study entry (in years) because, from a compu-
tational perspective, GRACE implementation requires the
input independent variable to start from t = 0.

Statistical analysis

Phenotypic effect sizes for clinical diagnosis

Effect sizes for differentiating diagnostic categories of the
single-modality biomarkers (both cross-sectional baseline
values and longitudinal rates of change) and the DPS were
computed as Cohen’s d and 95% confidence intervals (CI),
for three comparisons (healthy control versus Alzheimer’s dis-
ease, healthy control versus MCI, MCI versus Alzheimer’s
disease).

Disease progression score distributions

A one-way ANOVA and a Tukey’s range test were performed
to quantitatively assess pairwise differences in the DPS distri-
butions among the diagnostic groups at first PET scan and the
clinical progression of healthy control and MCI subjects.

Relation between disease progression score and

Alzheimer’s disease genetic risk score

We hypothesized that the DPS would be able to give a more
integrated view of the disease status than the single-modality
phenotypes separately. To test this hypothesis, we looked at
the association between the three phenotypes used in our
GWAS and a set of Alzheimer’s disease genetic risk score
(GRS). A GRS represents a ‘genetic summary’ of an individ-
ual’s disease risk, combining the weighted contribution of risk
alleles across the whole genome into a single metric.

The GRS computation requires two data sources: (i) individual
level SNP data; and (ii) the SNPs effect sizes, which were ob-
tained from the largest Alzheimer’s disease GWAS study con-
ducted so far by the International Genomics of Alzheimer’s
Project (IGAP; Lambert et al., 2013). Specifically, we used the
published results on 7 055 881 SNPs of the discovery phase com-
prising 54 162 subjects (17 008 Alzheimer’s disease cases and
37 154 control subjects). To avoid over-fitting we only analysed
ADNI participants who did not contribute to the IGAP study.
Further, we restricted the sample to subjects with 480% prob-
ability of being of Caucasian ancestry according to SNPweights
(as detailed in the ‘Autosome imputation and quality control’
section), resulting in n = 990 study subjects. Briefly, we used
15 P-value thresholds in the range 0.95–10�5. SNPs in the ex-
tended APOE locus (44 400–46 500 kb on chromosome 19;
human genome release hg19) were excluded from the GRS con-
struction to enable investigations of genome-wide risk independ-
ent from APOE. For each of the P-value thresholds we selected
the final set of SNPs for the score by using linkage disequilibrium
(LD) clumping implemented in PLINK resulting in only the most
significant SNP above the P-value threshold within an LD
block to be selected for the score [PLINK parameters: –clump-
r2 0.2 –clump-kb 1000 as used in Escott-Price et al. (2015)].
Next, we computed the GRS for all 15 thresholds and all 990
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independent ADNI subjects. To compute the GRS, for each SNP
the number of effect alleles (i.e. 0, 1 or 2) is multiplied by the
effect size obtained from the IGAP results. The GRS is then
simply the sum of all those products and was previously used
to investigate longitudinal changes in PET biomarkers (Altmann
et al., 2016). Here, we tested the GRS for association with the
latest diagnosis available in ADNI (healthy control/MCI/
Alzheimer’s disease), and with the three quantitative phenotypes
described above, controlling for age, sex, number of APOE4
alleles, years of education, and two principal components of
population structure (Supplementary Fig. 1).

Genome-wide association analysis

Genome-wide association tests were conducted with PLINK on
the imputed SNP data (5 137 219 markers). We tested three
quantitative phenotypes (via the –linear command): bilateral
hippocampal volume at first PET scan (926 subjects), florbeta-
pir SUVR at first PET scan (936 subjects) and DPS (944 sub-
jects). Sample sizes differences resulted from exclusion of
poorly registered scans. The larger sample size for DPS was
due to the model’s ability to deal with missing data: if a
baseline value of hippocampus or amyloid was excluded
from the cross-sectional GWAS, GRACE was still able to
work with the remaining time points and return a DPS
(see ‘Results’ section). Table 1 reports demographics and
clinical outcomes for the DPS GWAS sample.

SNP-trait associations were tested under an additive model.
Sex, age at first PET scan, years of education, two principal
components of population structure, and number of APOE "4
alleles were included as covariates. Since we regard DPS as a
longitudinal measure, associations were tested controlling
also for baseline levels of hippocampal volume and cortical
amyloid. Variants passing the threshold for genome-wide sig-
nificance were tested for a bias introduced by the additional
covariates using the method by Aschard et al. (2015).

X chromosome variants were tested for sex-stratified associ-
ation using XWAS (Gao et al., 2015): for each SNP, linear
models were built separately for males and females, and the
resulting Z-statistics combined via Stouffer’s method.

Genome-wide significance was defined at a P-value of
5 � 10�8 or lower. Manhattan, quantile-quantile and bees-
warm plots were generated in R (R Development Core Team,
2005), and regional association plots with LocusZoom (Pruim
et al., 2011). Variants passing the genome-wide suggestive
threshold (P = 10�5) were annotated using the Ensembl
Variant Effect Predictor (McLaren et al., 2016). Genome-wide
significant variants were tested for effects on gene expression
levels in 10 brain tissues by accessing data from the UKBEC
(www.braineac.org, Ramasamy et al., 2014) and followed up
in the GTEx database (Aguet et al., 2017) (date accessed:
9 May 2017) with a targeted query for a specific triplet
SNP-gene-tissue and correcting for the number of tests using
the Bonferroni method.

SNPs effect on risk of conversion

Following up on our GWAS results, we hypothesized that
variants related to disease progression through significant
association with DPS might exert an influence on clinical con-
version from healthy control to MCI or Alzheimer’s disease.
To test this hypothesis, we ran a Competing Risks regression
analysis using the model developed by Fine and Gray (1999)

to evaluate the risk of conversion to MCI or Alzheimer’s
disease of top SNPs, while accounting for death as a compet-
ing risk. This analysis compared carriers of the minor allele
(heterozygotes and homozygotes) to non-carriers, and was car-
ried out using the cmprsk package in R (Scrucca et al., 2010).
Competing risks analysis is a type of time-to-event analysis
that aims to accurately estimate the marginal probability of
an event in the presence of competing events such as death.
This approach is relevant in this study because participants
are elderly and death may occur before the event of interest
(i.e. conversion to MCI or Alzheimer’s disease) is observed,
which can produce bias in risk estimates. This analysis used
data from three NACC Alzheimer’s disease centres, collected
between 2005 and 2015. We included all participants from the
NACC dataset who were healthy at baseline, had genotyping
data available, and had at least 1 year of follow-up, to assess
the effect of top SNPs on risk of conversion. Age at entry,
APOE "4 status, sex, years of education, first two principal
components (Supplementary Fig. 1), and Alzheimer’s disease
centre were included as covariates in the analysis (n = 911,
Table 2). P-values were corrected for multiple comparisons
using the Bonferroni procedure.

Results

SNP imputation and quality control

After imputation and quality control, the available genetic

data comprised 5 082 878 autosomal and 54 340 X-

chromosome SNP markers and 1674 subjects, with a

total genotyping rate of 0.99. No subjects were missing

more than 10% of the genotypes. After ancestry adjustment

and removal of related individuals (144 individuals that

appeared to be related), the final sample comprised 1499

unrelated Central European individuals. For the X chromo-

some, there were 1329 Central European unrelated subjects

because of additional X-specific pre-imputation quality con-

trol (Gao et al., 2015).

Quantitative traits

Registration failure between PET scans and time-matched

T1-weighted MRI scans was detected in 16 subjects.

Hippocampal volumes concurrent with a correctly regis-

tered baseline PET scan were available for 1065 subjects.

Of these, genetic data were available for 926 unrelated

Central European subjects. SUVR values were available

for 1089 subjects. For 11 of them, registration failure

occurred on the baseline PET scan; consequently, these

SUVR values were excluded. Of the remaining 1078 indi-

viduals, genetic data were available for 936 unrelated

Central European subjects.

Disease progression scores

Figure 2A shows the long-term dynamic trajectories fitted

by GRACE to the florbetapir SUVR and hippocampal

volume data. DPS values were available for 1085 subjects;
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genetic data were available for 944 unrelated Central

European subjects. Mean DPS was significantly higher in

early MCI (P = 9 � 10�4) and late MCI (P = 4.36 � 10�13)

than in healthy control, higher in late MCI than in early MCI

(P = 4.81 � 10�13), and higher in Alzheimer’s disease than in

healthy control (P = 4.36 � 10�13), subjective memory com-

plaints (P = 4.36 � 10�13), early MCI (P = 4.36 � 10�13)

and late MCI (P = 5.23 � 10�13, Fig. 2B). Supplementary

Fig. 3 shows the DPS distributions for the different MCI

progression status. DPS showed better effect sizes (Cohen’s

d) in separating healthy control and Alzheimer’s disease

subjects as well as MCI and Alzheimer’s disease subjects

compared to both cross-sectional hippocampal volume and

cortical amyloid alone, and their longitudinal rate of change

(Supplementary Fig. 4 and Supplementary Table 2). There

was no difference across cross-sectional biomarkers in separ-

ating healthy controls and MCI, whereas DPS outperforms

rates of change in hippocampal volume and amyloid for this

task.

Effect of APOE4 status on quantita-
tive traits

APOE4 allele count was strongly correlated with all

three phenotypes. Without any covariate adjustments,

hippocampal volume exhibited a negative correlation

(Pearson’s r = �0.12, P = 1.8 � 10�4), while cortical amyl-

oid (r = 0.44, P5 2.2 � 10�16) and DPS (r = 0.35,

P5 2.2 � 10�16) were positively correlated. When adjusting

for age and sex, the correlations with APOE4 allele count

were strengthened for hippocampal volume (Pearson’s

r = �0.21, P5 2.2 � 10�16), cortical amyloid (r = 0.47,

P5 2.2 � 10�16) and DPS (r = 0.41, P52.2 � 10�16).

Relation between phenotypes and
Alzheimer’s disease polygenic risk
score

As a preliminary point, we verified that the GRS that incor-

porated many weakly associated variants were significantly

associated with Alzheimer’s disease diagnosis, when

discriminating healthy controls from MCI (minimal

P = 1.44 � 10�3) and healthy controls from Alzheimer’s

disease (minimal P = 2 � 10�4; Fig. 4A). This behaviour is

consistent with results reported in the literature (Escott-

Price et al., 2015). The quantitative traits showed theT
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Table 2 Demographics for the NACC participants

included in the competing risks regression analysis

Total (n = 911)

APOE "4, carriers/non-carriers 249/662

Age, years (�SD) 74.9 (8.75)

Education, years (�SD) 15.9 (2.70)

Sex, female/male 549/362
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strongest association with GRS at low P-value cut-offs

(P = 10�5, 10�4, 10�3), i.e. scores that include established

Alzheimer’s disease risk variants (Fig. 4B). Only the asso-

ciation between DPS and GRS at P-value cut-off 10�4 was

significant after Bonferroni correction. Furthermore, at the

same P-value cut-off, the GRS exhibits a stronger associ-

ation with DPS than the GRS at high P-value cut-offs

(e.g. 0.7) in the healthy control versus Alzheimer’s disease

setting.

Genome-wide association tests

A genome-wide significant association was found for the

DPS on chromosome 4 at rs6850306 (MAF = 0.15,

P = 1.03 � 10�8; Fig. 3C and Supplementary Table 3).

The second most strongly associated locus was

rs114368656 on chromosome 22 (sample MAF = 0.08,

P = 1.70 � 10�6, Fig. 3C). Supplementary Figs 6 and 7

show the regional association plots. Supplementary Fig. 8

shows the DPS distributions stratified by rs6850306 and

rs114368656 genotype, after adjusting for the covariates

used in the GWAS. No significant associations were

found for either hippocampal volume or cortical amyloid

(Fig. 3A and B). Supplementary Table 3 lists the 13, 14 and

12 suggestive independent loci for hippocampal volume,

cortical amyloid and DPS, respectively. The DPS results

include genetic loci that were neither suggestive by amyloid

burden (rs6850306: P = 0.87; rs114368656: P = 0.96)

nor by hippocampal volume (rs6850306: P = 0.21;

rs114368656: P = 0.16) alone, and that have not been re-

ported in the case-control meta-analysis by Lambert et al.

(2013) (rs6850306: P = 0.17; rs114368656 was not tested).

Association significance with DPS remained almost unchanged

when testing imputed dosages in place of genotypes (i.e. for

rs6850306 P = 1.22 � 10�8; for rs114368656

P = 1.92 � 10�6). There was no evidence for P-value inflation

with �5 1.062 (Supplementary Fig. 5). Summary statistics

are publicly available at https://doi.org/10.6084/m9.figshare.

5603203.v5 (autosomes and chromosome X separately; sum-

mary statistics for males and females separately as returned by

XWAS can be found in the X chromosome files).

The SNP rs6850306 acts as expression quantitative trait

locus (cis-eQTL) for the LCORL gene in the hippocampus

(minimal P = 0.035, GTEx), and specifically for the exon

probe sets 2720253 and 2720265 of the Affymetrix

Human Exon 1.0 ST array in the same brain tissue

(minimal P = 6.9 � 10�4, UKBEC, Supplementary Fig. 9).

As expected from the correlations reported in the ‘Effect of

APOE4 status on quantitative traits’ section, for hippocampal

volume and amyloid, once the number of APOE4 alleles was

not included as covariate in the association studies, significant

association was found for the APOE locus with both

Figure 2 Disease progression modelling results. (A) Long-term progression curves for two Alzheimer’s disease biomarkers. Every point in

the plot represents a biomarker measurement; longitudinal data from the same subject are connected by lines. The subjects’ clinical diagnosis at

the initial PET scan is colour-coded. The x-axis shows the time from study entry plus the estimated DPS, values on the y-axis are the Z-score

normalized individual biomarker measurements: florbetapir PET SUVR and intracranial-volume-normalized bilateral hippocampal volume.

(B) Disease progression scores stratified by diagnosis at baseline PET scan. The y-axis shows the DPS and the x-axis corresponds to different

diagnostic groups of increasing severity from left (Normal) to right (Alzheimer’s disease). Each box shows the DPS distribution for the

corresponding diagnostic group. Annotations represent the level of statistical significance for pairwise tests, after correction for multiple

comparisons (*** P5 0.001). EMCI = early MCI; LMCI = late MCI; SMC = subjective memory complaints.
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Figure 3 Manhattan plots for the three GWASs. Cross-sectional hippocampal volume (A), cross-sectional amyloid burden (B), disease

progression score (C), after correcting for age, sex, number of APOE "4, years of education, baseline cortical amyloid and hippocampal volume,

and two principal components of population structure. The red line is the genome-wide significance threshold at P = 5 � 10�8; the blue line is a

threshold for suggestive associations at P = 10�5.

Figure 4 Significance of association between Alzheimer’s disease polygenic risk score at different SNP inclusion thresholds

and binary and continuous phenotypes. (A) Diagnosis coded as three different logistic regressions [healthy control (HC) versus Alzheimer’s

disease (AD), healthy control versus MCI, MCI versus Alzheimer’s disease]. (B) The three quantitative traits used as outcomes in GWASs. The

x-axis shows the number of SNPs included in the computation of the GRS (on logarithmic scale). We selected from the results of the IGAP GWAS

SNPs that exceeded a P-value cut-off ranging from 10�5 (55 SNPs) to 0.95 (179 211 SNPs). The y-axis represents the strength of association

(P-value for the regression coefficient in a general linear model, logarithmic scale) between the GRS and the outcome variables. The black line is

the 0.01 significance threshold after Bonferroni correction for the effective number of independent tests performed. The effective number of

independent GRS (Meff,GRS) and phenotypes (Meff,phen) tested was computed following the simpleM method in Gao et al. (2008). (A) Significance

level adjusted for Meff,GRS only. (B) Significance level adjusted for both Meff,GRS and Meff,phen.
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hippocampal volume (rs429358 P = 1.34 � 10�10) and cor-

tical amyloid (rs429358 P = 2.54 � 10�50) (Supplementary

Fig. 10), in excellent agreement with previously published

results (Schuff et al., 2008; Drzezga et al., 2009). Similarly,

a strong association between the APOE locus and DPS can

be seen when both the corrections for APOE4 status and

baseline cortical amyloid are dropped (rs429358

P = 4.43 � 10�33; Supplementary Fig. 10D). The inclusion

of correlated traits as confounders in the DPS GWAS did

not introduce any bias in the estimated effect size for

rs6850306 (Wald test statistic W = 0.14, P = 1).

SNPs effect on risk of conversion

Competing risks regression analysis in the NACC dataset was

conducted for the two top SNPs rs6850306 (GWAS

b = �0.07; P = 1.03 � 10�8) and rs114368656 (GWAS

b = �0.05; P = 1.70 � 10�6). Given the relatively low minor

allele frequency of both rs6850306 and rs114368656, the

analysis was conducted on minor allele carriers (recessive

homozygotes and heterozygotes) versus non-carriers (major

allele homozygotes). rs6850306 appears to be protective

against conversion [hazard ratio (HR) = 0.593, 95%

CI = 0.387–0.907, n = 911, PBonf = 0.032], conferring

decreased risk to homozygous and heterozygous carriers of

the minor allele A and confirming the negative direction of

effect reported in the GWAS (Fig. 5A and Supplementary

Table 3). However, results suggest that rs114368656 does

not modulate conversion risk between carriers and non-car-

riers of the minor allele T (HR = 1.08, 95% CI = 0.737–1.57,

n = 480, PBonf = 1; Fig. 5B).

Discussion
We assessed the potential of a compound phenotype com-

prising cortical amyloid and hippocampal volume to

discriminate disease stages in Alzheimer’s disease. The

DPS exploits the different temporal properties of the indi-

vidual biomarkers: brain amyloid accumulation begins

during the prodromal phase where no cognitive decline is

manifest; hippocampal atrophy tends to be detectable later

during the disease course closer to clinical symptoms (Jack

et al., 2010). The resulting DPS increased with increasing

severity of the clinical diagnosis (Fig. 2B), was related to

longitudinal disease progression (Supplementary Fig. 3) and

was superior to the individual biomarkers in separating

Alzheimer’s disease subjects from healthy controls or MCI

subjects (Supplementary Fig. 4). In addition, the DPS

showed a stronger association with genome-wide polygenic

Alzheimer’s disease risk than the individual biomarkers

(Fig. 4B).

Having shown the advantage of the DPS over individual

biomarkers in tracking disease progression, the DPS was

used as a quantitative phenotype in a GWAS. Genome-

wide significant rs6850306 and its haplotype fall in the

LCORL gene on chromosome 4p15.31. For this variant

we identified a tissue-specific effect on LCORL expression

levels in the hippocampus, with expression levels increasing

with each copy of the minor allele; this cis-eQTL behaviour

was consistently found in two independent gene expression

databases.

The protein encoded by LCORL is a direct interaction

partner of CTBP1 (Szklarczyk et al., 2015), which mediates

activity-dependent synapse-to-nucleus communication

(Ivanova et al., 2015). Furthermore, the CTBP1/BARS com-

plex co-localizes with amyloid precursor protein (APP) in

macropinosomes at the cell surface (Tang et al., 2015).

Previous GWAS have linked LCORL to human height

(Wood et al., 2014). Interestingly, human height exhibits

a negative genetic correlation with Alzheimer’s disease

(Bulik-Sullivan et al., 2015).

Among the suggestive variants, a haplotype on chromo-

some 22 falls in the SYN3/TIMP3 gene. Of note, SYN3/

Figure 5 Cumulative distribution functions (complementary survival functions) for risk of conversion to MCI or Alzheimer’s

disease against months from baseline for NACC study participants. (A) Results stratified by rs6850306 minor allele carriers versus

non-carriers (A/A and A/G versus G/G); (B) stratified by rs114365686 minor allele carriers versus non-carriers (T/T and T/C versus C/C).

AD = Alzheimer’s disease.
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TIMP3 was also identified as susceptibility locus for age-

related macular degeneration (Chen et al., 2010; Fritsche

et al., 2016), a late-onset neurodegenerative disease of the

retina involving amyloid-b pathology (Ratnayaka et al.,
2015). It has also been suggested that upregulation of

TIMP3 may occur at an early disease stage, playing an

important role in the development of neurofibrillary tangles

(Dunckley et al., 2006). A number of interesting association

signals to neurodegenerative diseases have been reported in

this region on chromosome 22 (Lachman et al., 2006;

Otaegui et al., 2009; Zaltieri et al., 2015). However,

some caution is required when interpreting these associ-

ation signals due to scarce coverage on some genotyping

platforms and lack of information on LD structure in the

1000 Genomes reference panel and all resources based on

it. In fact, the ADNI whole-genome sequencing data called

no variants in the 5 kb region surrounding rs114368656.

We believe this is due to the general architecture of the

locus, that is characterized by several insertions/deletions

and copy-number variations of different lengths.

We demonstrated the first successful application of a

multimodal DPS as quantitative phenotype in a GWAS.

There remain, however, some limitations. First, the DPS

relies heavily on the choice of considered biomarkers. In

this study, amyloid burden and hippocampal volume were

used owing to their specificity to Alzheimer’s disease path-

ology. However, larger or different sets of biomarkers may

provide more granular estimates of disease progression,

which may translate into increased statistical power for

reaching genome-wide significance. Second, the multimodal

nature of the DPS complicates validation in independent

cohorts. In fact, for this work we could not secure a suffi-

ciently sized cohort with genotyping, longitudinal amyloid

and structural imaging data to validate our findings.

Although lacking a formal replication cohort, a supporting

evidence for our genome-wide significant association in

chromosome 4 comes from the conversion risk analysis

performed on an independent dataset (NACC), confirming

the protective role of rs6850306 revealed through GWAS

and linking rs6850306 genotype, lower DPS values and

decreased risk for conversion. Additionally, there is

supporting evidence for the two top associated loci in the

literature; linking one locus to age-related macular degen-

eration, which shares many genetic similarities with

Alzheimer’s disease including APOE as a risk locus.

Third, despite their inherent appeal for genetic studies, ima-

ging-derived phenotypes may also be a source of undesired

variation. For instance, our analysis of cross-sectional

amyloid burden (Fig. 3B) did not show a significant asso-

ciation at rs509208, which was identified in an earlier

study using a subset of these data (Ramanan et al.,

2014). The discrepancy may originate from slightly differ-

ent sample sizes and the use of a different pipeline to

compute brain amyloid burden, highlighting the need for

robust imaging biomarkers such as the DPS presented here.

Lastly, despite the several lines of evidence here presented

(statistical association, cis-eQTL, modulation of conversion

risk), these are not sufficient to claim the identification of a

protective gene for Alzheimer’s disease: this can only be

achieved through fine-mapping of the genomic region of

interest and follow-up with functional studies and animal

models. Without confirmation from these studies, any other

gene in the locus can potentially be the causal gene.

In summary, we performed the first successful genetic

study of a progression score for Alzheimer’s disease derived

from multiple imaging modalities. We believe that this in-

tegrative approach has great potential for identifying

common genetic variation related to the multiple, inter-

linked pathogenic pathways involved in Alzheimer’s disease

and other complex diseases.
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