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Abstract 

Mild cognitive impairment (MCI) is a condition intermediate between physiological brain 

aging and dementia. Amnesic-MCI (aMCI) subjects progress to dementia (typically to 

Alzheimer-Dementia=AD) at an annual rate which is 20 times higher than that of cognitively 

intact elderly. The present study aims to investigate whether EEG network Small World 

properties (SW) combined with Apo-E genotyping, could reliably discriminate aMCI subjects 

who will convert to AD after approximately a year. 145 aMCI subjects were divided into two 

sub-groups and, according to the clinical follow-up, were classified as Converted to AD(C-MCI, 

71) or Stable(S-MCI, 74). Results showed significant differences in SW in delta, alpha1, alpha2, 

beta2, gamma bands, with C-MCI in the baseline similar to AD. Receiver Operating 

Characteristic(ROC) curve, based on a first-order polynomial regression of SW, showed 57% 

sensitivity, 66% specificity and 61% accuracy(area under the curve: AUC=0.64). In 97 out of 

145 MCI, Apo-E allele testing was also available. Combining this genetic risk factor with Small 

Word EEG, results showed: 96.7% sensitivity, 86% specificity and 91.7% accuracy(AUC=0.97). 

Moreover, using only the Small World values in these 97 subjects, the ROC showed an AUC of 

0.63; the resulting classifier presented 50%sensitivity, 69%specificity and 59.6%accuracy. When 

different types of EEG analysis (power density spectrum) were tested, the accuracy levels were 

lower (68.86%). Concluding, this innovative EEG analysis, in combination with a genetic test 

(both low-cost and widely available), could evaluate on an individual basis with great precision 

the risk of MCI progression. This evaluation could then be used to screen large populations and 

quickly identify aMCI in a prodromal stage of dementia. 

This article is protected by copyright. All rights reserved

A
cc

ep
te

d 
A

rti
cl

e



 

 

Introduction 

Mild cognitive impairment (MCI) is a clinical and neuropsychological state in the elderly 

brain which is intermediate between normal cognition and dementia. It is mainly characterized 

by objective evidence of memory impairment during a neuropsychological examination that does 

not yet encompass the definition of dementia
1,2

. Epidemiological research suggests that amnesic 

MCI (aMCI) is a precursor to Alzheimer’s Dementia (AD)
3
, based on the high rate of 

progression from this state to AD
2
. About 50% of all MCI subjects convert to dementia

4-7
. The 

others will either remain in the MCI condition or return to a fully normal one and never progress 

to dementia. 

To plan optimal and early therapeutic, organizational, lifestyle and rehabilitative 

interventions, aMCI diagnosis should be combined with the most reliable prognosis on the 

likelihood and time of progression to dementia. Growing evidence suggests that early diagnosis 

reduces the health and social costs associated with dementia management
8,9

. Moreover, 

prodromal MCI to AD is becoming the preferred target for clinical trials with potentially disease-

modifying experimental drugs. Because such a high risk is associated with the MCI condition, it 

is important to increase the success rate of the trials conducted. The early diagnosis of prodromal 

MCI to AD can presently be reached with a high degree of sensitivity and specificity by 

combining a number of tests (e.g. hippocampal volumetric MRI, PET or PET integrated with 

beta-amyloid and tau radioligands and lumbar puncture for CSF beta- and tau-metabolites). Due 

to their high costs, limited availability and/or body invasiveness, however, these tests cannot be 

used to screen a large population sample. 

Electroencephalogram (EEG) is an ideal candidate for such screening, because it is a 

widely available, non-invasive and low-cost
10

 procedure. Moreover, a great deal of research has 

been conducted on EEG abnormalities in pathological brain aging
11

. AD patients show more 

delta and fewer posterior alpha EEG rhythms than cognitively intact elderly (Nold) subjects
12

. 
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Similarly, MCI show less alpha power than Nold subjects
13

. Furthermore, a reduction in EEG 

spectral coherence in the alpha band in AD has been reported
14,15

, and EEG theta power was 

found to be higher in aMCI subjects who will convert to AD. High predictive accuracy between 

baseline EEG features and the probability of a future decline was found
16

. Furthermore, EEG 

coherence has been shown to contribute to the classification of AD from Nold
15

 and to the 

prediction of aMCI conversion to AD
14

. However, findings were usually significant only at a 

group level
17

; moreover, relatively small samples were investigated with a briefer-than-required 

follow up. Despite such limitations, the progression of the diagnosis of AD has been summarized 

in a review
18

, showing generalized slowing of the rhythms contained in the spectral profile, 

reduced complexity and perturbations in EEG organization. Furthermore, the cortico-cortical 

connectivity and network properties of EEG have been addressed in several studies
11,19-21

. Many 

of the studies have also explored the idea that dementias—particularly in the very early, namely 

prodromal, stages—mainly affect synaptic transmission and therefore represent ―disconnection 

syndromes‖
22

.  

Network science tends to model the brain as an intricate amalgamation of networks; a 

network is a mathematical representation of a real-world complex system, which is defined by a 

collection of nodes (vertices) and links (edges) between pairs of nodes. Nodes usually represent 

brain regions, while links represent anatomical, functional or effective connections, depending 

on the dataset
23

. Anatomical connections typically correspond to white matter fiber tracts 

between pairs of grey matter brain regions (cortical areas or subcortical relays). Connections 

between neuronal assemblies reflect segregation and integration processes, as revealed by local 

clustering (segregation) and path length (integration). Brain connections are organized in a 

network topology characterized by a high degree of local clustering (segregation) and long-

distance connections (integration). A ―Small-world‖ concept was introduced as a model of 

network organization, allowing for an optimal balance between local specialization and global 

integration
24

. This approach could be used to model brain-functional architecture
25

 and correlate 
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it with behavior (i.e. neuropsychological test performance). This evaluates whether functional 

connectivity patterns between brain areas reproduce the organization of more-or-less strictly 

bound networks based on the strength of oscillatory firing synchronizations between 

adjacent/remote neuronal assemblies in a time frame of milliseconds
26-30

. In recent literature  

several studies have utilized graph theory analysis of connectivity from EEG signals combined 

with ApoE genotyping in order to discriminate between healthy elderly and AD patients
31,32

. No 

previous studies utilized such an approach to distinguish prodromal-to-AD from non-prodromal 

–MCI subjects. 

The primary aim of the present study was to investigate brain connectivity using a Small 

World approach for the analysis of EEG-related neural networks. Moreover, as the ε4 allele of 

the Apo-E gene is a genetically determined risk factor for the pathogenesis of late-onset and 

sporadic AD, a secondary endpoint is to investigate whether EEG connectivity markers along 

with genetically determined risk-indicators for dementia, as represented by Apo-E testing can 

reach a greater sensitivity/specificity for the stage of MCI prodromal to AD
33,34

. Our purpose is 

to provide a reliable low-cost, widely available and non-invasive method for discrimination of 

high-risk aMCI subjects, namely those who, on an individual basis, will rapidly (i.e. after 1 or 2 

years) convert to AD. 

 

Subjects and methods 

Participants 

The ages of the 145 aMCI subjects at the time of the EEG recordings were: 71.83 ± 0.56 

SEM, MMSE was 25.87 ± 0.18, and gender distribution was 82 females and 63 males. The 

participants, all of whom were affected by aMCI, had been referred to the Memory Clinic of the 

Catholic University, Policlinic A. Gemelli Foundation in Rome
4,35,36

. They were divided into two 

sub-groups according to their clinical evolution, classified as converted to AD or stable aMCI 

after a follow-up from Time 0 (=diagnosis of MCI). At the end of the follow-up, it was shown 
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that at the time of the EEG recordings, the patient group included 74 stable aMCI (= aMCI-S: 

age 70.72 ± 0.77 SEM, MMSE 26.33 ± 0.27, months of follow-up 38.17 ± 3.48; M/F: 33/41) and 

71 Converted aMCI (= aMCI-C: age 73.05 ± 0.81 SEM, MMSE 25.32 ± 0.23, months of follow-

up 18.29 ± 1.60; M/F: 35/36). The time interval between aMCI diagnosis and EEG recording 

was less than one month in both groups and at an individual level. As an EEG control group, 175 

AD age-matched patients were selected (age 72.23 ± 0.55, MMSE 20.12 ± 0.31, M/F: 81/94). 

All subjects were right-handed, according to the Handedness Questionnaire. Individual 

informed consent was obtained, and the study was approved by a local ethical committee. 

Experimental procedures conformed to the Declaration of Helsinki and national guidelines. 

 

Inclusion and exclusion criteria 

All subjects took part in a battery of neuropsychological tests assessing attention, memory, 

executive functions, visuo-construction abilities and language. Memory was assessed via the 

immediate and delayed recall of the Rey Auditory Verbal Learning Test, the delayed recall of 

Rey figures, the delayed recall of a 3-word list and the delayed recall of a story. An MCI 

amnesic diagnosis hinged upon an impairment in an at least one episodic memory test. The 

abnormal threshold for performances on the memory tasks was set below the 5th percentile of 

the healthy population. The exclusion criteria included traumatic head injuries, epilepsy, 

alcoholism and the occurrence of any other past neurological or psychiatric diseases. The 

patients were carefully screened for medical conditions that could potentially be associated with 

cognitive disturbances (i.e., renal or hepatic failure, thyroid dysfunction, and folate and/or 

vitamin B12 deficits). 

Each subject also underwent brain MRI and SPECT, MMSE (Mini-Mental State 

Evaluation), a clinical dementia rating (CDR) and an assessment of their Geriatric Depression 

Scale (GDS), Hachinski Ischemic Score (HIS) and Instrumental Activities of Daily Living scale 

(IADL) to confirm the diagnosis and to exclude other causes of dementia, such as frontotemporal 
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dementia, vascular dementia, extrapyramidal syndromes, reversible dementias and Lewy body 

dementia. This was performed in order to ensure the creation of clinically homogeneous groups. 

AD was diagnosed according to the National Institute on Aging-Alzheimer’s Association 

workgroups
36

 and the DSM IV TR criteria. Moreover, the affected individuals showed a 

significant reduction in hippocampal volume and an increase in the width of the temporal horn 

and choroidal fissure (ranging between 2 and 4 on the Likert scale). The pattern of blood flow 

and oxygen consumption on SPECT was abnormal as well. 

The exclusion criteria for AD focused upon any evidence of (i) frontotemporal dementia, 

(ii) behavioral variants of frontotemporal dementia, (iii) vascular dementia, (iv) extra-pyramidal 

syndromes, (v) reversible dementias (including pseudodementia of depression) and (vi) Lewy 

body dementia. 

Amnesic MCI was diagnosed according to guidelines and clinical standards
2,37,38

. The 

exclusion criteria for aMCI were: (i) mild AD, as diagnosed by standard protocols, including the 

National Institute on Aging-Alzheimer’s Association workgroups
36

; (ii) clinico-instrumental 

evidence of concomitant dementia, such as frontotemporal, vascular and reversible dementias 

(including pseudo-depressive dementia), marked fluctuations in cognitive performance 

compatible with Lewy body dementia and/or features of mixed dementias; (iii) evidence of 

concomitant extra-pyramidal symptoms; (iv) clinical and indirect evidence of depression, as 

revealed by the GDS [scores lower than 14 (no depression)]; (v) other psychiatric diseases, 

including epilepsy, drug addiction, alcohol dependence or the use of neuro/psychoactive drugs 

(including acetylcholinesterase inhibitors); and (vi) current or previously uncontrolled or 

complicated systemic diseases (including diabetes mellitus) or traumatic brain injuries. 

Follow-up visits, including neuropsychological tests, were carried out every six months in 

order to intercept the epoch of an eventual MCI-to-AD conversion. 

 

Data recordings and preprocessing 
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The EEG recording was performed at rest, on individuals with closed eyes and no-task 

conditions (for at least 5 minutes). The subjects were seated and relaxed in a sound-attenuated 

and dimly lit room. Electroencephalographic signals were recorded with a standard montage 

from 19 electrodes (Fp1, Fp2, F7, F8, F3, F4, T3, T4, C3, C4, T5, T6, P3, P4, O1, O2, Fz, Cz 

and Pz) positioned on the scalp, according to the International 10-20 system. Eye movements 

were monitored from two different channels with vertical and horizontal montages. 

Skin/electrode impedances were lowered below 5 KΩ. 

Data were analyzed with Matlab R2011b software (Math Works, Natick, MA) using scripts 

from the EEGLAB 11.0.5.4b toolbox (Swartz Center for Computational Neurosciences, La Jolla, 

CA; sccn.ucsd.edu/eeglab). The EEG recordings were band-pass filtered from 0.2 to 47 Hz using 

a finite impulse response (FIR) filter and a 256 Hz sampling rate. Ocular, muscular, cardiac and 

other types of artifacts were inspected on imported data fragmented in 2 s duration epochs. The 

procedure was as follows: 1) the data were reviewed, and the epochs with aberrant waveforms or 

with evident artifactual activity were manually discarded by an expert in EEG; and 2) the 

detection and rejection of artifacts were completed through an independent component analysis 

(ICA) using the Infomax ICA algorithm, as implemented in the EEGLAB. ICA is a blind source 

decomposition algorithm that enables the separation of statistically independent sources from 

multichannel data. It is considered an effective method for separating ocular movements and 

blink artifacts from EEG data. The components were visually inspected, and, if artifact 

contamination was found, they were manually rejected by the investigator. 

 

Functional connectivity analysis  

EEG functional connectivity analysis was performed using eLORETA exact low resolution 

electromagnetic tomography software
26,27,39,40

. The eLORETA algorithm is a linear inverse 

solution for EEG signals with no localization error that can indicate sources under ideal (noise-

free) conditions
41

. According to the scalp-recorded EEG potential distribution, the low resolution 
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brain electromagnetic tomography (eLORETA) software was used to compute a discrete, three-

dimensionally (3D) distributed linear, weighted, minimum-norm inverse solution. The particular 

weights used in eLORETA endow the tomography with the property of exact localization 

necessary to test point sources, yielding images of the current density with exact localization, 

albeit with a low spatial resolution (i.e. the neighboring neuronal sources are highly correlated). 

To obtain a topographic view of the whole brain, brain connectivity was computed with 

eLORETA software in 84 regions, positioning the center in the available 42 Brodmann Areas 

(BAs: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 

33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47) in the left and right hemispheres. 

Regions of Interest (ROIs) are needed for estimation of the electric neuronal activity that is 

used to analyze brain-functional connectivity. The signal at each cortical ROI consisted of the 

average electric neuronal activities of all voxels belonging to that ROI, as computed with 

eLORETA. For each hemisphere, among the eLORETA current density time series of the 84 

ROIs, the intracortical Lagged Linear Coherence, extracted via the ―all nearest voxels‖ method
42

, 

was computed between all possible pairs of the 84 ROIs for each of the seven independent EEG 

frequency bands of delta (2–4 Hz), theta (4–8 Hz), alpha 1 (8–10.5 Hz), alpha 2 (10.5–13 Hz), 

beta 1 (13–20 Hz), beta 2 (20–30 Hz) and gamma (30-45 Hz) for each subject. 

Starting with the definition of the complex valued coherence between time series x and y 

in the frequency band ω—which is based on the cross-spectrum given by the covariance and 

variance of the signals—the lagged linear coherence in the frequency band ω is reported in 

accordance with the following equation
42

: 

  

Where Var and Cov are the variance and covariance of the signals. 

This was developed as a measure of true physiological connectivity not affected by volume 

conduction and low spatial resolution
42

. The values of lagged linear connectivity computing 
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between all pairs of ROIs for each frequency band were used as weights of the networks built in 

the graph analysis. 

 

Graph analysis 

As previously stated, a network is a mathematical representation of a real-world complex 

system. It is defined by a collection of nodes (vertices) and links (edges) between pairs of nodes. 

Nodes usually represent brain regions, while links represent anatomical, functional or effective 

connections
23

, depending on the dataset. Anatomical connections typically correspond to white 

matter fiber tracts between pairs of grey matter brain regions (cortical areas or subcortical 

relays). Functional connections correspond to magnitudes of temporal correlations in activity and 

may occur between pairs of anatomically unconnected regions. 

A weighted graph is a mathematical representation of a set of elements (vertices) that 

may be linked through connections of variable weights (edges). 

In the present study, the weighted and undirected networks were built (the vertices of the 

network were the estimated cortical sources in the BAs) and the edges were weighted by the 

Lagged Linear value within each pair of vertices. The software instrument used here for the 

graph analysis was the Brain Connectivity Toolbox (BCT, brain-connectivity-toolbox.net), 

adapted with our own Matlab scripts. 

The Small World (SW) parameter was evaluated on the brain networks, since it measures 

the balance between local connectedness and the global integration of a network, representing 

brain network organization. Small-world architecture is intermediate between that of random 

networks (associated with a short overall path length but a low level of local clustering) and 

regular networks or lattices (which have a high level of clustering but a high overall path length); 

specifically, small world networks have a relatively high level of clustering and a short path 

length
43

. The measure of network small-worldness was defined as the ratio of the normalized 

Clustering Coefficient Cw and the normalized Path Length Lw. We used data normalization (i.e. 
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relativization) before performing the small-world measurements. The normalized Characteristic 

path length was obtained dividing the parameter by  a mean value. The mean value is the average 

of the Characteristic path length values of each subject within the seven EEG frequency bands. 

The same procedure was applied to compute the normalized Clustering coefficient. As we 

computed from weighted networks it was difficult to evaluate disgraphs with the same number of 

nodes and connections (all connections were available), so we decided to use relative values 

within bands
11,19-21

. 

 

Apo-E testing 

In a subgroup of 97 subjects (age 71.46 ± 0.66 SEM, MMSE 25.98 ± 0.22; 52 stable 

aMCI (age 69.85 ± 0.89, MMSE 26.74 ± 0.29, months of follow-up 45.87 ± 3.94; M/F: 22/30) 

and 45 Converted aMCI (age 73.33 ± 0.92, MMSE 25.11 ± 0.27, months of follow-up 19.75 ± 

1.82; M/F: 19/26), blood genotyping was performed. The Apo-E genotype was determined 

following the well-established method pioneered by Hixson and Vernier
44

. During a further 

classification process, we considered the MCI subjects to be ―Apo-E4 non-carriers‖ (absence of 

the ε4 allele) or ―Apo-E4 carriers‖ (presence of at least one ε4 allele). 

 

Statistical evaluation 

The eLORETA statistical evaluation was performed using a graph analysis pattern 

extracted with sLORETA/eLORETA from the brain network. The normality of the data was 

tested using the Kolmogorov-Smirnov test, and the hypothesis of Gaussianity could not be 

rejected. In order to confirm the working hypothesis, a statistical ANOVA design was addressed 

for the Small World between the factors Group (MCI-C, MCI-S) and Band (delta, theta, alpha 1, 

alpha 2, beta 1, beta 2, and gamma). An ANOVA design was also incorporated for the Small 

World between the factors Group (AD, MCI-C, MCI-S) and Band (delta, theta, alpha 1, alpha 2, 

beta 1, beta 2, gamma). 
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Polynomial Regression and ROC curve and 10-fold cross validation 

The dataset contains the small-world value of the brain network for the 145 subjects at the 

7 given EEG frequency bands: delta, theta, alpha 1, alpha 2, beta 1, beta 2 and gamma. Each 

subject has been assigned a label according to whether he or she developed Alzheimer’s disease 

at the follow-up. 

A simple polynomial regression has been chosen, calculated using the MATLAB built-in 

function ―fitlm‖—the function fits, using the least squares method, a given polynomial. The 

polynomial contains 8 coefficients: the constant term and a coefficient for each of the frequency 

bands. The residuals plot showed an almost normal distribution, suggesting that an appropriate 

polynomial was chosen for the approximation. 

The data were randomly distributed across the 10 groups in accordance with the ―10-fold 

cross–validation‖ technique, and the classifier was tested against all of the groups while being 

trained on the other 9. The resulting performances and AUCs were averaged to compute the final 

value. 

The following indexes measured the performance of the conversion binary classification: 

1) Sensitivity, which measures the rate of the positives (Converted MCI) who were correctly 

classified as positives (i.e. they were assigned a ―true positive rate‖ using the signal detection 

theory); 2) Specificity, which measures the rate of the negatives (Stable MCI) who were 

correctly classified as negatives (i.e. they were assigned a ―true negative rate‖ using the signal 

detection theory); 3) Accuracy of the classifier (subjects correctly classified); and 4) Area under 

the ROC curve (AUC). We reported sensitivity, specificity and accuracy only for the ―optimal‖ 

values (with the cut-off point corresponding to the maximal accuracy). 

Finally, we included Apo-E genotyping in the dataset. The dataset contained the same 

small-world value of the brain network for the 97 subjects at the 7 given EEG frequency bands: 

delta, theta, alpha 1, alpha 2, beta 1, beta 2 and gamma. Added to the code of ―APO-E-ε4 non-
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carrier‖ or ―APO-E-ε4 carrier was a polynomial containing 9 coefficients: the constant term, the 

Apo-E and a coefficient for each of the frequency bands. Each subject was assigned a label 

corresponding to the outcome (i.e. whether the individual had converted to Alzheimer’s disease 

at the follow-up). 

 

 

Results 

Clinical data 

The clinical and demographic data of the whole group of subjects are reported in table 1, 

showing that the two groups present no differences. 

Insert table 1 about here 

 

Graph theory parameter analysis 

Both the ANOVAs for the evaluation of the Clustering Coefficients (Cw) and Path 

Lengths (Lw) showed statistically significant interactions (Cw: F(6,858)=3.7042; p=0.00122; 

Lw: F(6,858)=4.1535; p<0.0004) between Group (aMCI-Converted, aMCI-Stable) and EEG 

Band (delta, theta, alpha 1, alpha 2, beta 1, beta 2, gamma) factors. Duncan-planned post hoc 

testing showed higher values in both coefficients in the delta (p<0.04) band, and lower values in 

alpha 1 (p<0.004) and alpha 2 bands (p<0.011) in MCI-C, with respect to the MCI-S subjects. 

The ANOVA for the evaluation of the Small World (SW) showed a statistically 

significant interaction (F[6,858]=7.6633; p<0.00001) between the Group (aMCI-Converted, 

aMCI-Stable) and EEG Band (delta, theta, alpha 1, alpha 2, beta 1, beta 2, gamma) factors. 

Duncan-planned post hoc testing showed lower values of SW coefficients in the delta (p<0.034), 

beta 2 (p<0.032) and gamma (p<0.0001) bands and vice versa for the higher SW in the alpha 1 

(p<0.011) and the alpha 2 frequency bands (p<0.0005) in MCI-C, with respect to the MCI-S 

subjects. 
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In order to evaluate eventual differences in the AD condition, this second analysis was 

performed. For the evaluation of SW between the factors Group (AD, aMCI-C, aMCI-S) and 

Band (delta, theta, alpha 1, alpha 2, beta 1, beta 2, gamma), ANOVA showed a statistical 

interaction (F(12,1914)=7.5748; p<0.00001), as plotted in Figure 1. Duncan-planned post hoc 

testing showed no statistical differences between AD and aMCI-C subjects, except in the gamma 

band (p<0.00002). 

Insert figure 1 about here 

Figure 2 reports the functional coupling distribution, as revealed by the lagged linear 

coherence, in all EEG frequency bands in the two subgroups of aMCI subjects. It is evident, as 

has already been illustrated in several previous studies (including one of ours), that Converted 

aMCI presents greater coupling in delta and lower in alpha than Stable aMCI. 

Insert figure 2 about here 

 

Apo-E testing 

Among the 97 subjects with the Apo-E classification, of the 66 ―Apo-E4 non-carriers‖ 

(lacking the ε4 allele), 29 converted (43.9%). Meanwhile, among the 31 ―Apo-E4 carriers‖ (with 

at least one ε4 allele), 16 (51.6%) converted. The receiver operating characteristic (ROC, red line 

in Figure 3) curve showed an Area under the curve (AUC) of 0.51. 

Insert figure 3 about here 

 

Classification between Stable and Converted individuals based on Small World  

In the classification process considering only the Small World values (145 subjects), the 

receiver operating characteristic (ROC, green line in Figure 3) curve showed an AUC of 0.64 

(indicating moderate classification accuracy). The resulting classifier showed 57% sensitivity, 

66% specificity and 61% accuracy for the classification of the aMCI state as a prodromal 

indicator of AD. This result was obtained when all subjects were included.  
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When adding Apo-E genotyping to the classification process (using 97 subjects), the 

ROC curve (blue line in Figure 3) showed an AUC of 0.97; the resulting classifier presented 

96.7% sensitivity, 86% specificity and 91.7% accuracy, indicating very high accuracy for the 

classification of the aMCI state as prodromal to AD. Using only the Small World values in these 

97 subjects, the ROC curve showed an AUC of 0.63; the resulting classifier presented 50% 

sensitivity, 69% specificity and 59.6% accuracy. 

Of note, it is possible to consider the point density in the ROC curve as a measure of 

stability to threshold changes: in that regard, it is clear that the most stable (although not the 

highest performing) classifier is the one that relies only on Apo-E, as it evaluates only one 

variable with 1 and 0 as possible values. Comparing SW to SW + Apo-E, it is possible to state 

that, by adding genotype information, classification performance increases and stability 

improves. 

 

 

Control analyses 

Figure 4 illustrates the connection matrices related to the two groups of aMCI-Converted 

and aMCI-Stable (indicating the baseline functional network topology). 

Insert figure 4 about here 

 

In order to understand whether the difference in the baseline could influence the results, 

we selected two subgroups that were perfectly homogeneous in terms of their demographic and 

cognitive parameters. The subgroups included 42 aMCI-S and 43 aMCI-C. Furthermore, 27 

aMCI-S and 30 aMCI-C also presented Apo-E testing values—demographic data are reported in 

Table 2. For the groups, we performed the same classifier procedures of the main analyses of the 

present study. Our results were in line with the main results, but were not as statistically 

significant, probably because of the small number of patients, who showed an AUC of 0.62. The 
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resulting classifier showed 52% sensitivity, 90% specificity and 61% accuracy. When adding 

Apo-E genotyping to the classification process, the ROC curve showed an AUC of 0.7; the 

resulting classifier presented 67% sensitivity, 93% specificity and 65% accuracy. 

Insert table 2 about here 

 

Is the need for a "graph theoretical" model supported by the present results? In order to 

answer this question, we compared the same type of classifier to other methods of EEG analysis 

currently used for AD studies and applied what was found to the same EEG epochs utilized for 

graph valuation, namely spectral coherence and power spectrum in combination with Apo-E. 

Our most significant result was obtained when analyzing the power density spectrum on all 

available subjects. We used sLORETA software to solve the EEG inverse problem within a 

three-shell spherical head model and to find the values of the voxel current density, to explain 

the EEG spectral power density recorded by the scalp electrodes. The current density at each 

voxel was then normalized to the power density averaged across all the frequencies (0.5–45 Hz) 

and across all 6,239 voxels of brain volume. After this normalization, the current density values 

lost their original physical dimension and were represented by an arbitrary unit scale. This 

procedure also reduced inter-subject variability.  

In line with the low spatial resolution of the adopted technique, we used ROI marker 

sLORETA software to collapse the voxels of sLORETA solutions at 12 regions of interest 

[ROIs, 6 for the left and 6 for the right hemispheres, Brodmann areas included in the cortical 

regions of interest: frontal (8, 9, 10, 11, 44, 45, 46, 47), central (1, 2, 3, 4, 6), parietal (5, 7, 30, 

39, 40, 43), occipital (17, 18, 19), temporal (20, 21, 22, 37, 38, 41, 42) and limbic (31, 32, 33, 

34, 35, 36)] coded according to the Talairach space. The signal at each cortical ROI consists of 

the averaged electric neuronal activities of all voxels belonging to that ROI, as computed with 

sLORETA. The current densities at different voxels were then grouped to describe the cerebral 

activity in the following EEG frequency bands: delta (2–4 Hz), theta (4–8 Hz), low alpha (8–
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10.5 Hz), high alpha (10.5–13 Hz), low beta (13–20 Hz), high beta (20–30 Hz) and gamma (30–

45 Hz). The sLORETA method is a properly standardized, discrete, linear, minimum-norm, 

inverse-solution method that computes the three-dimensional cortical distribution of the electric 

neuronal source activity from the EEG recordings on the head surface
45

. A detailed description 

of the method can be found in several previous publications
41

.  

In accordance with the data, we performed the classifier procedures of the main analyses 

of the present study and obtained 51.79% sensitivity, 100% specificity and 68.86% accuracy; 

these results are promising but show less significance than those in our proposal. 

 

 

Discussion 

Alzheimer's disease (AD) is characterized by a progressive loss of memory and a 

deterioration of other cognitive functions. The illness has a prolonged and progressive course, 

and patients—if they survive long enough to experience the late form of the disease—die in a 

nearly vegetative state. The disease characteristics place an enormous emotional and financial 

burden on patients, their families and society
46

. In 2010, AD cost the United States an estimated 

$604 billion. This number is staggering, especially in light of predictions that the number of AD 

cases worldwide, currently estimated at 36 million, will triple by 2050
9
. The U.S. costs of 

dementia were estimated to total $818 billion in 2015, an increase of 35% since 2010; 86% of 

the expenses are incurred in high-income countries. The costs of informal care and the direct 

costs of social care represent similar proportions of the total cost, whereas the costs incurred by 

the medical sector are much lower. A threshold of US $1 trillion will be crossed by 2018
47

. 

The AD clinical phenotype follows a prodromal stage known as MCI, which is usually 

characterized by memory loss (aMCI). The identification of early biomarkers of conversion from 

aMCI to AD are of interest to researchers and health policy makers when the goal of early 

interventions is pursued. In fact, even in the absence (at the present) of a disease-modifying 
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therapy, it is evident that the early initiation of pharmacological and non-pharmacological 

treatments (including changes in lifestyle) helps to maintain personal autonomy in daily 

activities and significantly reduces the total costs of disease management
48-50

. Moreover, many 

of the clinical trials with potentially disease-modifying drugs target MCI subjects who are 

prodromal to AD, since failure has been demonstrated when the full symptomatology of AD has 

been already developed. Therefore, biomarkers that can carefully predict the evolution of the 

disease at an early stage could be instrumental in enabling early diagnosis and intervention and 

could be used to identify individuals who could benefit from trials with experimental drugs. This 

can be partly accomplished with the presently available diagnostic armamentarium (volumetric 

MRI, PET, PET+radioligands/Lumbar puncture for amyloid and tau metabolites), though it has a 

relatively low sensitivity to synaptic dysfunction (which is associated with a very early stage of 

pre-symptomatic AD) and is definitely expensive, limited in terms of its availability on a 

territorial level and relatively invasive. Because of these limitations, such a diagnostic 

combination is not feasible for a large population screening. A recent survey and meta-analysis 

yielded a prevalence of the MCI condition of 5.9% in the >60 year-old population, with a steady 

progression in the different age groups (4.5% 60-69, 5.8% 70-79, 7.1% 80-89; Cohort Studies 

Memory in an International Consortium-COSMIC)
51

. These represent significant numbers for a 

population-based screening. In recent years, progressively more attention has been paid to the 

electrophysiological substrate of the disease, which could be used to evaluate whether the 

analysis of brain electroencephalographic signals could track early progression from MCI to 

mild AD via large population screening. There is a growing interest in this technique because of 

its low cost, widespread availability and non-invasiveness. This paper aimed to determine 

whether a specific analysis of EEG rhythms, exploring brain Small World characteristics, could 

predict—when combined with a genetic risk evaluation gleaned from the Apo-E genotype—the 

risk of conversion from MCI to AD as a first-level screening method with appropriate 

specificity/sensitivity. This type of combined approach (i.e. graph theory for EEG signals and 
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ApoE genotyping) have been previously utilized with diagnostic purposes in order to distinguish 

between healthy elderly and AD subjects
31,32

; however, to the best of our knowledge, such an 

approach has never been previously reported for prognostic purposes, namely to discriminate 

prodromal-to-AD from non-prodromal in a sample of MCI subjects. 

Healthy brain organization reflects an optimal balance of functional integration and 

segregation; such a scenario is termed small-world. Small World characteristics reflect complex 

inhibitory and excitatory brain circuits consisting of functionally specialized regions that 

continuously and mutually cooperate to acquire, share and integrate information in a constant 

state of dynamic fluctuations that is also governed by a number of variables—including 

attention, emotion, motivation and arousal—influencing network performance. Connections 

between neuronal assemblies reflect segregation and integration processes, as revealed by local 

clustering (segregation) and path length (integration). 

Here, a statistically significant difference in the SW organization of the Converted 

(particularly among rapid—i.e. within 1-2 years—converters) was found, and the Small World 

distributions in the EEG frequency bands of interest corresponded to a Stable aMCI; however, it 

was also shown that the Converted aMCI subjects do have SW characteristics very similar to 

those of Alzheimer’s patients 1 to 2 years before conversion (Time 0 of the study). 

Many studies have looked at topological changes in the brain networks with different 

modalities and have examined the structural and diffusion tensor imaging MRI, EEG/MEG and 

fMRI recently reviewed by Xie & He
52

. Therefore, AD is more often considered a disconnection 

syndrome
49

, and brain topology can be represented by a progressive derangement of the brain 

organization in hub regions and long-range connections causing Small World architecture 

alteration. In fact, due to decreasing local and global connectivity parameters, the large-scale 

functional brain network organization in AD deviates from the optimal small-world architecture 

towards a more ―ordered‖ type (as reflected by lower Small World values), leading to a less 
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efficient information exchange across brain areas that is in line with the disconnection hypothesis 

of Alzheimer’s disease
49

.  

Here, an abnormal increase in graph theory parameters in the Converted, with respect to 

the Stable MCI, has been observed for the low alpha rhythm, along with a decrease in the delta 

and gamma rhythms. Such an effect should be interpreted in light of the physiological role which 

the alpha rhythm plays. Alpha frequencies constitute the leading characteristic of normal EEG 

activity at waking rest, usually defined as the ―idling rhythms‖ of the adult brain
53

. Several 

studies support the hypothesis that alpha is a deterministic chaotic signal with several functional 

correlates ranging from memory formation to sensory-motor processing
54

. In healthy individuals, 

alpha rhythm works as an oscillatory component of brain activity and can therefore be 

interpreted as a basic form of information transmission in the brain
55

. Moreover, event-related 

activity studies have shown a positive correlation between alpha frequency and the speed of 

information processing, as well as a good cognitive performance
55

. 

For the delta band, it is argued that, in a waking state, such EEG rhythms are poorly 

represented, thus reflecting a condition of likely alpha-delta ―reciprocal inhibition‖
11

. 

Furthermore, it is well known that the anatomical or functional disconnection of lesioned cortical 

areas generates spontaneous slow oscillations in the delta range in virtually all recorded neurons. 

The SW decrease in the delta band represents a type of structured behavior that could be 

interpreted as an increase in delta activity and a functional inhibition. The opposite holds true for 

the alpha band. 

A Small World decrease in the gamma band in the converted MCI is in line with previous 

evidence
26

 showing a decrease of the Small World gamma band in Alzheimer’s patients with 

respect to MCI and control subjects. The gamma band (>30 Hz) includes high-frequency EEG 

oscillations that mediate information transfer between cortical and hippocampal structures for 

memory processes
56

, particularly through feed-forward mechanisms
57

 and coherent phase-

coupling between oscillations from different structures
58

. Both animal and human studies 
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provide evidence that gamma oscillations play a fundamental role in memory tasks. Gamma 

neural activity is involved in numerous cognitive functions—including visual object processing, 

attention and memory
59

—and is also strongly associated with behavioral performance (accuracy 

and reaction time) in several memory tasks, including tasks probing episodic memory, encoding 

and retrieval
60

. Further, microelectrode intraneural recordings have demonstrated that gamma 

oscillations are pivotal in spike phase synchronization, which is at the base of EEG connectivity 

mechanisms
61

. 

The ROC curve for EEG SW characteristics showed a >60% sensitivity (AUC 0.64, 

indicating moderate classification accuracy) for classifying the MCI state as a prodromal 

indicator of AD when all subjects were used. The present findings are in line with those of 

previous studies
26,39,62

 in which Small World characteristics were found to have decreased in 

patients with AD with respect to MCI in low frequency EEG rhythms. In other words, the MCI 

connectivity pattern was less random than that of the AD group. Moreover, significant 

differences between healthy elderly MCI subjects and AD patients have been demonstrated by 

showing that physiological brain aging presents greater specialization (though lower values) of 

Small World EEG rhythm characteristics that are higher than normal in slow frequencies and 

lower in alpha bands
28

. Finally, the control analysis, with respect to AD patients, showed that 

Converted aMCI presented a graph theory pattern which was practically identical to that of AD. 

These findings suggest that EEG connectivity analysis, combined with neuropsychological 

evaluation in MCI, could be of great help in early identification of this condition as a first-line 

screening method and a means to intercept those subjects with a high risk for rapid progression 

to AD. 

ROC curves showed that, when both phenotype and genotype characteristics (obtained at a 

low cost with widely available Apo-E technology) were combined, the accuracy remarkably 

increased to 91.78% (AUC 0.97, indicating an optimal classification accuracy) for classifying the 

MCI state as prodromal of AD. This result is in line with the fact that the ε4 allele of the APO-E 
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gene is a major genetic risk factor for pathogenesis of late-onset Alzheimer’s disease
33,34

; it also 

suggests that SW characteristics and Apo-E contribute to predict outcome in a synergistic way 

with little overlap. We also verified that the EEG Small World measures played a particularly 

relevant role in APO-E e4 non-carriers. Of note, a more homogenous population showed 

decreased accuracy, but it should be also noted that the more homogenous population consisted 

in a lower number of subjects.  

Altogether, our findings clearly demonstrate that ApoE genotype and EEG connectivity 

reflect different types of ―aggressors‖ responsible for neurodegenerative mechanisms and that 

they nicely integrate each other when considered in combination. 

Is the "graph theoretical" model superior to other types of EEG analysis in an AD 

diagnostic context? In order to answer this question, we compared the same type of classifier to 

other methods of EEG analysis currently used for AD studies; we then applied the results to the 

same EEG epochs utilized for graph valuation, namely spectral coherence and power spectrum, 

still in combination with Apo-E genotyping. The analysis showed 51.79% sensitivity, 100% 

specificity and 68.86% accuracy. These results are promising but less significant than those from 

our Small World analysis. 

The intrinsic characteristics of EEG rhythms contain relevant information on 

neurodegenerative processes underlying AD. These processes begin long before clinical 

symptoms manifest, by deranging the synaptic transmissions and the efficacy of brain dynamic 

connections
49

. A plastic reorganization of the surviving neuronal circuitries—the neural 

―reserve‖—affects daily living abilities. This is due to prolonged neurodegeneration toward a 

network maintenance of functional connections
11,49,63

. In aMCI-C subjects, the Small World 

characteristics provided reliable predictions of aMCI to AD progression within a relatively short 

timeframe. Moreover, rapid progression from aMCI to AD heralds an aggressive type of 

dementia with a rapid degradation of daily life skills. 
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In conclusion, EEG connectivity analysis, combined with a neuropsychological MCI 

pattern and Apo-E genotyping, could represent a combination of biomarkers that are of great 

help in the early identification of MCI prodromal to AD. This combination represents a 

multimodal, low-cost and non-invasive approach, one that utilizes widely available techniques 

which, when combined, reach high sensitivity/specificity and good classification accuracy on an 

individual basis (higher than 0.97 of AUC). It could therefore be used to effectively determine 

the risk of the progression to AD in MCI patients and should be considered a first line of 

screening. 
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Figures & Table Legends  

 

Table 1: Clinical data of the two groups of aMCI: MMSE (mini mental state examination); 

RAVLT (Rey’s Auditory Verbal Learning Test); MFTC (Multiple Features Target Cancellation); 

and StroopSf (Stroop test short form). 

 

Table 2: Clinical data of the two homogeneous subgroups of aMCI (in the right, subjects having 

Apo-E): MMSE (mini mental state examination); RAVLT (Rey’s Auditory Verbal Learning 

Test); MFTC (Multiple Features Target Cancellation); and StroopSf (Stroop test short form). 

 

Figure 1: Small World characteristics across EEG frequency bands in Stable and Converted 

aMCI subjects with respect to AD patients. 

 

Figure 2: Functional coupling in Stable and Converted subjects. An arbitrary threshold was used 

to illustrate these patterns. It is evident that Converted aMCI presented more coupling in delta 

and beta and gamma, and less coupling in alpha than Stable MCI.  

 

Figure 3: Average receiver operating characteristic (ROC) curves and their confidence intervals, 

illustrating the classification of the Stable and Converted aMCI individuals based on the Apo-E 

(red line, 97 patients), Small World (green line, 145 patients) and Apo-E and EEG (blue line, 97 

patients) values. The area under the ROC (AUC) curves was, respectively, 0.52, 0.64 and 0.97, 

indicating an optimal classification accuracy. 

 

Figure 4: Square image representation Lagged Linear Coherence of each band in both pre and 

post. In the axes there are reported the single nodes of the network: BA 1F, 2P, 3F, 4F, 5P, 6F, 

7P, 8F, 9F, 10F, 11F, 13F, 17O, 18O, 19O, 20T, 21T, 22T, 23P, 24F, 25F, 27T, 28T, 29T, 30T, 

31P, 32F, 33F, 34T, 35T, 36T, 37T, 38T, 39P, 40P, 41T, 42T, 43P, 44F, 45F, 46F, 47F first in 

the left and then in the right hemisphere, where F, T, O and P represent Frontal, Temporal, 

Occipital and Parietal, respectively. 
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Figure 1: Small World characteristics across EEG frequency bands in Stable and Converted 

aMCI subjects with respect to AD patients. 
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Figure 2: Functional coupling in Stable and Converted subjects. An arbitrary threshold was used 

to illustrate these patterns. It is evident that Converted aMCI presented more coupling in delta 

and beta and gamma, and less coupling in alpha than Stable MCI.  
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Figure 3: Average receiver operating characteristic (ROC) curves and their confidence intervals, 

illustrating the classification of the Stable and Converted aMCI individuals based on the Apo-E 

(red line, 97 patients), Small World (green line, 145 patients) and Apo-E and EEG (blue line, 97 

patients) values. The area under the ROC (AUC) curves was, respectively, 0.52, 0.64 and 0.97, 

indicating an optimal classification accuracy. 
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Figure 4: Square image representation Lagged Linear Coherence of each band in both pre and 

post. In the axes there are reported the single nodes of the network: BA 1F, 2P, 3F, 4F, 5P, 6F, 

7P, 8F, 9F, 10F, 11F, 13F, 17O, 18O, 19O, 20T, 21T, 22T, 23P, 24F, 25F, 27T, 28T, 29T, 30T, 

31P, 32F, 33F, 34T, 35T, 36T, 37T, 38T, 39P, 40P, 41T, 42T, 43P, 44F, 45F, 46F, 47F first in 

the left and then in the right hemisphere, where F, T, O and P represent Frontal, Temporal, 

Occipital and Parietal, respectively. 
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Table 1  

 

 

 

Clinical data of the two groups of aMCI: MMSE (mini mental state examination); RAVLT 

(Rey’s Auditory Verbal Learning Test); MFTC (Multiple Features Target Cancellation); and 

StroopSf (Stroop test short form). 

 

 

 

 

  Stable   Converted 

  Mean St Err 
 

Mean St Err 

Educational level 10,15 0,71   10,02 0,70 
RAVLT Immediate Recall 26,95 1,19 

 
24,50 0,99 

RAVLT Delayed Recall 3,87 0,49 
 

2,32 0,34 
RAVLT Recognition corr. 10,34 0,53 

 
9,06 0,72 

RAVLT Recognition False 4,97 0,97 
 

4,31 1,00 
RAVLT Recognition Accuracy  0,85 0,02 

 
0,81 0,03 

Constructional Praxis 9,26 0,36 
 

8,59 0,41 
Constructional  Praxis 
Landmarks 66,26 0,75 

 
64,85 1,03 

MFTC Accuracy 0,96 0,01 
 

0,90 0,02 
MFTC False alarms 0,43 0,18 

 
1,55 0,65 

MFTC time 95,96 5,04 
 

96,52 9,29 
Raven’ Matrices ‘47 24,53 0,99 

 
25,13 2,84 

Phonological Verbal Fluency 30,57 1,94 
 

25,09 1,38 
Categorical Verbal Fluency 10,96 0,83 

 
10,52 0,65 

Stroopsf  interference Time  33,71 3,93 
 

55,52 9,19 
Stroopsf  Interference Errors 1,89 0,58 

 
5,19 1,56 

Corsi Forward 4,69 0,26 
 

3,71 0,39 
Corsi Backward 3,50 0,29 

 
3,60 0,24 

Clock-Drawing 3,13 0,44 
 

2,43 0,53 
Prose Memory 3,63 1,08 

 
1,43 0,57 

Span Forward 5,23 0,30 
 

5,22 0,32 

Span Backward 4,00 0,41 
 

3,17 0,40 

This article is protected by copyright. All rights reserved

A
cc

ep
te

d 
A

rti
cl

e



 

Table 2  

Mean St Err Mean St Err Mean St Err Mean St Err

MMSE 26.09 0.34 25.63 0.27 26.60 0.39 25.47 0.36

age 71.71 0.89 72.02 1.05 71.15 1.00 72.27 1.12

Educational level 9.36 0.75 10.07 0.79 9.56 0.91 9.83 0.93

RAVLT Immediate Recall 25.91 1.23 25.38 1.07 26.24 1.56 25.90 1.42

RAVLT Delayed Recall 2.97 0.43 2.61 0.44 3.05 0.55 2.92 0.56

RAVLT Recognition corr. 10.41 0.58 9.73 0.70 9.76 0.81 9.65 1.03

RAVLT Recognition False 5.36 1.02 5.35 1.24 5.25 0.93 6.24 1.76

RAVLT Recognition Accuracy 0.82 0.02 0.83 0.02 0.83 0.02 0.82 0.03

Constructional Praxis 9.16 0.28 9.00 0.38 8.87 0.35 8.08 0.35

Constructional  Praxis Landmarks 66.00 0.60 64.55 1.10 65.93 0.82 62.54 1.48

MFTC Accuracy 0.97 0.01 0.91 0.02 0.97 0.01 0.90 0.03

MFTC False alarms 1.24 0.72 1.25 0.47 1.44 1.01 1.35 0.58

MFTC time 79.38 5.61 81.64 6.13 83.19 7.14 82.07 8.47

Raven’ Matrices ‘47 24.88 1.02 22.44 1.06 25.10 1.35 21.98 1.33

Phonological Verbal Fluency 29.00 1.55 28.13 1.44 27.80 1.92 28.56 2.00

Categorical Verbal Fluency 13.30 0.71 10.87 0.74 12.94 0.90 11.69 0.94

Stroopsf  interference Time 41.54 5.99 42.50 6.86 36.55 5.18 37.54 5.00

Stroopsf  Interference Errors 2.18 0.54 2.55 0.56 3.10 0.56 3.13 0.76

Corsi Forward 4.70 0.19 4.25 0.17 5.50 0.47 4.67 0.13

Corsi Backward 3.50 0.13 3.33 0.11 3.50 0.16 3.33 0.13

Clock-Drawing 3.13 0.23 3.17 0.18 3.14 0.30 3.20 0.24

Span Forward 5.20 0.21 5.00 0.23 5.00 0.32 5.00 0.32

Span Backward 4.00 0.26 3.50 0.18 3.50 0.47 3.50 0.22

42 Stable 43 Converted 27 Stable 30 Converted

 

Clinical data of the two homogeneous subgroups of aMCI (in the right, subjects having Apo-E): 

MMSE (mini mental state examination); RAVLT (Rey’s Auditory Verbal Learning Test); MFTC 

(Multiple Features Target Cancellation); and StroopSf (Stroop test short form). 
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