



**CIRN** Centro Interuniversitario di Ricerca per le Neuroscienze



CRC per la Diagnosi e Sorveglianza delle Malattie da Prioni dell'Uomo

# Demenze Rapidamente Progressive

## **Gianfranco Puoti**

## **CONVEGNO SIN CAMPANIA** Focus su novità diagnostiche e terapeutiche

Napoli, 13 dicembre 2019 Aula Magna G. Salvatore AOU Federico II

# **Rapidly progressive dementia (RPD)**

No formal definition exists for what constitutes a rapidly progressive dementia (RPD), generally we use the term when dementia occurs in less than 1–2 years from illness onset, but more commonly over weeks to months.

| Prevalence of RPD in a Tertiary care dementia referral center : 2% |                                                     |                              |  |  |
|--------------------------------------------------------------------|-----------------------------------------------------|------------------------------|--|--|
| DEMOGRAFICS                                                        | • Gender: F=M<br>-• Mean Age: 67 8 yrs + 11 (41-86) |                              |  |  |
|                                                                    | • Disease duration: 6,4 mth $\pm$ 5                 | Tagliapietra et al, JAD 2013 |  |  |

Prion diseases are the prototypical causes of RPD...

...but reversible causes of RPD might mimic prion disease and should always be considered in a differential diagnosis

At first: exclude delirium !!

# **DSM-5 criteria for delirium**

A) <u>A disturbance in attention</u> (i.e., reduced ability to direct, focus, sustain, and shift attention) and awareness (reduced orientation to the environment).

B) The disturbance develops over a short period of time (usually hours to a few days), represents a change from baseline attention and awareness, and <u>tends to fluctuate</u> in severity during the course of a day.

C) An additional disturbance in cognition (e.g., memory deficit, disorientation, language, visuospatial ability, or perception).

D) The disturbances in Criteria A and C are not explained by another preexisting, established, or evolving neurocognitive disorder and do not occur in the context of a severely reduced level of arousal, such as coma.

E) There is evidence from the history, physical examination, or laboratory findings that the disturbance is a direct physiological consequence of another medical condition, substance intoxication or withdrawal (i.e., due to a drug of abuse or to a medication), or exposure to a toxin, or is due to multiple etiologies.

# Prion diseases are the Prion Protein p



### **Human Prion Diseases**

Sporadic (80-85%)

- ✓ Sporadic Creutzfeldt-Jakob (sCJD)
- ✓ Sporadic Fatal Insomnia (sFI)
- ✓ Variably Protease Sensitive Prionopathy (VPSPr)

### Genetic (10-15%)

- ✓ Familial Creutzfeldt-Jakob familiare (fCJD)
- ✓ Fatal Familial Insomnia (FFI)
- ✓ Gerstmann-Staussler-Sheinker disease (GSS)

### Transmissible (~1%)

- ✓ latrogenic Creutzfeldt-Jakob
- ✓ New variant Creutzfeldt-Jakob disease (nvCJD)

✓ Kuru







# 'Protein only hypothesis'

Prions, the causative agents of transmissible spongiform encephalopathies, appear to consist entirely of  $PrP^{Sc}$ , an orderly aggregated,  $\beta$  sheet—rich isoform of a ubiquitous membrane protein termed  $PrP^{C}$ .



- a self-propagating state of a protein (the prion) that is biologically accessible but rarely formed spontaneously
- Prions replicate themselves by acting on their nonprion substrate protein
- Prions spread to naive hosts and find new substrate pools for replication.
- Prions also cause phenotypic changes in the host.
- Replication can be maintained over multiple serial passages from one animal to another
- Prions are usually partially proteinase K (PK) resistant
- Prions are usually insoluble in nonionic detergents.



# PrP conversion...









# ... represents the key molecular event of prion diseases

- » stochastic event in the sporadic forms
- > induced by exogen PrP<sup>Sc</sup> in the **iatrogenic or transmitted** forms
- > as consequence of mutated PrP <u>instability</u>, in the **familial** forms

## Rerationship between PrP genotype, determined by MV-polymorphism at codon 129, and type 1 or 2 PrP<sup>Sc</sup>



- (A) Diagrammatic representation of each of the three 129 genotypes (MM, MV, and VV) with their average relative prevalence in all subtypes of sCJD.
- (B) PrP<sup>sc</sup>type 1 is associated with the 129MM genotype in about 95% of cases, whereas MV and VV genotypes are associated with PrP<sup>sc</sup> type 2 in about 86% of cases.
- (C) Diagrammatic representation of PrP<sup>Sc</sup> types 1 and 2; each consists of an amino-terminal region (N) of different size that is protease-sensitive and is digested down to amino acid (AA) 82 in type 1 and to amino acid 97 in type 2 (arrows). The different cleavage site is thought to be the result of the different conformation in PrP<sup>Sc</sup> types 1 and 2.
- (D) Types 1 and 2 PrP<sup>Sc</sup> have distinct electrophoretic mobilities because of the different size of their respective protease-resistant fragments.
- (E) Both 129 genotype and PrP<sup>sc</sup> types are thought to act as determinants of the phenotypes of sporadic prion diseases that are commonly identified with letters and numbers to indicate the associated genotype and PrP<sup>sc</sup> type.

# Genetic forms (10-15%)



\*Mutations with two or more known haplotypes

# Creutzfeldt-Jakob disease <u>Diagnosis</u>

EEG





Periodic lateralized epileptiform discharges (PLEDs) in the right hemisphere, with some widespread



Generalized periodic epileptiform discharges (GPEDs)or periodic sharp-waves complexes



FLAIR MRI showing bilateral anterior basal ganglia high signaling a sCJDVMM1 patient



FLAIRMRIshowingbilateralandsy mmetricalhighsignalinthepulvin arnucleiofthethalamus-the 'pulvinar sign' of variant CJD



FLAIR MRI (row above) and DWI (row below) in a sCJDVV11 patient. Note the much more prominent signal hyperintensity in the cortical ribbon on DWI c/w FLAIR images.

# Creutzfeldt-Jakob disease <u>Diagnosisi</u>

### A comparison of CSF Tau and 14-3-3 protein in the diagnosis of Creutzfeldt-Jakob disease

Hamlin C, Puoti G. Berri S . Neurology 2012





Histogram of distribution of tau values (log) per 0.1 log unit



# Creutzfeldt-Jakob disease <u>Diagnosis</u>

### **Real-time quaking-induced conversion (RT-QuIC)**

This technique exploits the ability of PrPSc to induce PrPC to misfold in a cyclical fashion to form aggregates of PrPSc fibrils. The formation of these aggregates is monitored in real time by their ability to bind a fluorescent dye, namely thioflavin T



#### **Key Points**

• CSF RT-QuIC is a highly sensitive and specific test for sporadic Creutzfeldt-Jakob disease (sCJD).

• It is not affected by age at onset of disease or PRNP codon 129; however, it may be less sensitive in the rarer forms of sCJD such as MM2 with cortical changes and <u>VV1.</u>

• Of those patients who are negative for CSF RT-QuIC, 90% have an alternative positive diagnostic investigation, such as CSF Tau or 14-3-3, the presence of cortical ribboning and/or basal ganglia changes on MRI or triphasic waves on electroencephalogram.

• The interpretation of CSF RT-QuIC is hampered by the presence of elevated red cell counts (>1250 x 10^6/L), white cell counts (>10 x 10^6/L) and raised total protein concentrations (>1 g/L).

# Creutzfeldt-Jakob disease

#### <u>Diagnosis</u>

### Diagnostic criteria for surveillance of sporadic Creutzfeldt-Jakob disease from 1 January 2017

Mackenzie and will. Verson 1. F1000Res. 2017;6:2053

| 1.1                               | DEFINITE:<br>Progressive neurological syndrome AND<br>Neuropathologically or immunohistochemically or biochemically confirmed                       |  |  |  |  |  |  |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1.2                               | PROBABLE:<br>1.2.1 I + two of II and typical electroencephalogram <sup>a</sup>                                                                      |  |  |  |  |  |  |
| <u> </u>                          | OR 1.2.2 I + two of II and typical magnetic resonance imaging brain scan <sup>b</sup>                                                               |  |  |  |  |  |  |
|                                   | OR 1.2.3 I + two of II and positive cerebrospinal fluid (CSF) 14-3-3                                                                                |  |  |  |  |  |  |
|                                   | OR 1.2.4 Progressive neurological syndrome and positive real-time quaking-induced conversion in CSF or other tissues                                |  |  |  |  |  |  |
| 1.3                               | POSSIBLE:                                                                                                                                           |  |  |  |  |  |  |
| I + two of II + duration <2 years |                                                                                                                                                     |  |  |  |  |  |  |
| I.                                | Rapidly progressive cognitive impairment                                                                                                            |  |  |  |  |  |  |
| II                                | <ul> <li>A Myoclonus</li> <li>B Visual or cerebellar problems</li> <li>C Pyramidal or extrapyramidal features</li> <li>D Akinetic mutism</li> </ul> |  |  |  |  |  |  |

<sup>a</sup>Generalised periodic complexes. <sup>b</sup>High signal in caudate/putamen on magnetic resonance imaging brain scan or at least two cortical regions (temporal, parietal, occipital) on either diffusion-weighted imaging or fluid-attenuated inversion recovery.

### **Sporadic prion diseases – Clinical heterogeneity**

Puoti G. et al. Lancet Neurology 2012

|         |                      | Sporadic familial<br>insomnia | Variably protease-sensitive prionopathy |                            |                | ypes)                |             |
|---------|----------------------|-------------------------------|-----------------------------------------|----------------------------|----------------|----------------------|-------------|
|         |                      | MM2 (n=31)                    | VV (n=21)                               | MV (n=9)                   | MM (n=3)*      | All genotypes (n=33) |             |
| Age a   | Age at onset (years) | 46 (13, 24–74)                | 67 (9, 48-77)                           | 74 (5, 65–81)              | 78 (12, 64–87) | 70 (9, 48–87)        | _           |
| Durat   | Duration (months)†   | 24 (13, 10-73)                | 18 (15, 10–60)                          | 34 (25, 7 <del>-</del> 73) | 41 (9, 10–73)  | 24 (10, 7–73)        |             |
| Preser  | Presentation         |                               |                                         |                            |                |                      |             |
| Cog     | Cognitive decline    | 13/31 (42%)                   | 12/21 (57%)                             | 6/9 (67%)                  | 0/3            | 18/33 (55%)          | %)          |
| Ata     | Ataxia               | 13/31 (42%)                   | 0/21                                    | 0/9                        | 1/3 (33%)      | 1/33 (3%)            | %)          |
| Psv     | Insomnia             | 9/31 (29%)                    |                                         |                            |                |                      | %)          |
| Vic     | Psychiatric          | 8/31 (26%)                    | 14/21 (67%)                             | 6/9 (67%)                  | 1/3 (33%)      | 21/33 (64%)          | )<br>)/)    |
| VISC    | Visual signs         | 7/31 (23%)                    |                                         |                            |                |                      | 70)         |
| Apr     | Dysautonomia         | 1/31 (3%)                     |                                         |                            |                |                      | %)          |
| Advar   | Aphasia              |                               | 11/21 (52%)                             | 1/9 (11%)                  | 1/3 (33%)      | 13/33 (39%)          |             |
| Cog     | Parkinsonism         |                               | 2/21 (10%)                              | 0/9                        | 1/3 (33%)      | 3/33 (9%)            | %)          |
| Ata     | Advanced stage       |                               |                                         |                            |                |                      | %)          |
| Psy     | Cognitive decline    | 31/31 (100%)                  | 21/21 (100%)                            | 9/9 (100%)                 | 3/3 (100%)     | 33/33 (100%)         | %)          |
| Visi    | Ataxia               | 22/31 (71%)                   | 10/21 (48%)                             | 2/9 (22%)                  | 1/3 (33%)      | 13/33 (39%)          | %)          |
| Ank     | Insomnia             | 14/31 (45%)                   |                                         |                            |                |                      | ×)          |
| Apr     | Psychiatric          | 14/31 (45%)                   | 18/21 (86%)                             | 6/9 (67%)                  | 1/3 (33%)      | 25/33 (76%)          | <i>(</i> 0) |
| Parl    | Visual signs         | 13/31 (42%)                   |                                         |                            |                |                      | %)          |
| Pyra    | Pyramidal signs      | 9/31 (29%)                    |                                         |                            |                |                      | %)          |
| Myocl   | Dysautonomia         | 6/31 (19%)                    |                                         |                            |                |                      | %)          |
| EEG se  | Aphasia              |                               | 12/21 (57%)                             | 1/9 (11%)                  | 2/3 (67%)      | 15/33 (45%)          |             |
| CSF s€  | Parkinsonism         |                               | 8/21 (38%)                              | 3/9 (33%)                  | 3/3 (100%)     | 14/33 (42%)          |             |
| 14:     | Myoclonus            | 32% (30)                      | 12% (16)                                | 22% (9)‡                   | 100% (2)‡      | 22% (27)‡            |             |
| <br>Tau | EEG sensitivity§     | 7% (27)                       | 0% (16)                                 | 25% (4)                    | 50% (2)        | 9% (22)              |             |
| Tau     | CSF sensitivity§¶    | 13% (15)                      | 37% (8)                                 | 0% (4)                     | 50% (2)        | 21% (14)             |             |
| MRI s∈  | MRI sensitivity§     | 8% (26)**                     | 5% (20)                                 | 0% (9)                     | 0% (2)         | 3% (31)              |             |

### **Sporadic prion diseases – Neuropathological heterogeneity**



adapted from Puoti G. et al. Neurology 1999 and J Neuropath Exp Neurol 2005

# **BSE and nvCJD**





#### Variant Creutzfeldt-Jakob disease cases by year and country



Mackenzie G and Will R. Creutzfeldt-Jakob disease: recent developments [version 1]. F1000Research 2017, 6:2053

3F4-Ab





## **Etiologies of RPDs**

Major diagnostic categories of patients with rapidly progressive dementia (RPD) <u>referred</u> to, versus <u>evaluated</u> at the University of California, San Francisco (UCSF) rapidly progressive dementia program over 13 years.



## The breakdown of etiologies of RPDs at University of California, San Francisco, Memory and Aging Center



Peterson RW et al. Neurology®Clinical Practice 2012

#### 18% had potentially treatable etiologies

(50% autoimmune, 13% each infectious, psychiatric, and cancer, and 10% toxic-metabolic)

# Causes of Rapidly Progressive Dementia in a major tertiary care dementia referral center in Spain

Barcelona Cohort (n. 49)

Sala I et al. Alzheimer Dis Assoc Disord 2012



### **Causes of Rapidly Progressive Dementia in a major tertiary care dementia referral center in Greece**

Athens Cohort (n. 68)

Papageorgiou SG et al. Alzheimer Dis Assoc Disord 2009



# US National Prion Disease Pathology Surveillance Center (CWRU - Cleveland, Ohio)

...which treatable disorders are most commonly mistaken for CJD



Chitravas et al. Ann Neurol 2011



**Rapidly Progressive Dementia** 

Michael D. Geschwind Continuum 2016

ETIOLOGIC CATEGORY



V.I.T.A.M.I.N.S.

#### VASCULAR



# V.I.T.A.M.I.N.S.

### VASCULAR



# MELAS

A 59-year-old woman developed confusion, progressive aphasia, mutism, and fluctuations of alertness over 2 weeks DWI MRI revealed abnormalities overlapping with CJD (**A**), although the FLAIR MRI (B) with white and gray matter hyperintensity was not consistent with CJD. CSF showed normal cell counts, negative PCR for herpes simplex virus, elevated lactate (4.6 mmol/L), and increased levels of 14-3-3 and tau protein (1300 pg/L), both concerning for CJD. There were no periodic sharp-wave complexes on EEG recordings. MR spectroscopy revealed a lactate signal indicative of mitochondriopathy and genetic analysis confirmed the MELAS A3243G mutation. The DWI (A) displays bitemporal neocortical hyperintense signals. The FLAIR (B) 2 days after the initial MRI scan reveals newly emerging symmetric lesions in the pulvinar thalami. Magnetic resonance spectroscopy (C) displays a strong lactate signal.

M.D. Geschwind Continuum (Minneap Minn) 2016



# V. .T.A.M.I.N.S.

**INFECTIOUS** 

### PML

Progressive multifocal leukoencephalopathy associated with borderline idiopathic CD4<sup>+</sup> T-cell lymphocytopenia

Dato C. et al. Int. J. Neurosci, submitted



Bilateral FLAIR hyperintense signal of parietal and occipital lobe subcortical and deep white matter, extending to the splenium of the corpus callosum, temporal lobe white matter, and the left external capsula. Slight hypointensity of the same areas on T1W images, without contrast enhancement.

#### Atypical PML with cortical involvement



#### **Atypical monofocal PML**





### TOXIC/METABOLIC

|                                                                                                                   | <u></u>                                                                         |                                                       | <u>■</u> ₹                                                   |                                           | 5                                             | lascu                 | lisez |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|-----------------------------------------------|-----------------------|-------|
|                                                                                                                   |                                                                                 |                                                       |                                                              | ontine<br>Xysis                           |                                               | ke syndrome           |       |
|                                                                                                                   | ~                                                                               | ~                                                     |                                                              |                                           |                                               | -                     |       |
| <u> </u>                                                                                                          | Cinhosis<br>(portosystemic<br>sturring)                                         | Ober autos<br>pernicidas arenta<br>veganism fad dets  | hiponatenia)                                                 | Raid correction of<br>electrolyte         | alooholism,<br>mahutrition                    | Risk factors:         |       |
| Abdominal pain,<br>autoromic disfunction,<br>bahavioral charges,<br>altered consciousness                         | Apathy, inattention,<br>parkinsonism, crania<br>dystinesia                      | lognive impairment<br>Infrequent, but<br>paresthesias | enceptelopathy,<br>movement disorders,<br>parafutachiparesis | May take few days to<br>develop symptoms; | ele novenent<br>abnomalities, atavia          | Cognitive impairment, |       |
|                                                                                                                   | Palital 11 hpp;<br>12 normal <sup>er</sup>                                      | Nondagnostic                                          | varepelluu pese<br>gangla, talamus;<br>may tale days to      | Lyper T2 lesions<br>"El in pons,          | tidamus and<br>manmilary booles <sup>ed</sup> | 12 hyper in media     |       |
|                                                                                                                   | Nordagnostic                                                                    | Nordagnost                                            |                                                              | Nordagnesic                               |                                               | Nondagnostic          |       |
| in urine<br>in urine                                                                                              |                                                                                 | ,Vitami B12,<br>MMA,<br>Itomostaine                   |                                                              |                                           |                                               | '                     |       |
| Carbohydrates,<br>intraverous heem<br>arginate; avoid certain<br>mediations and<br>mediations and<br>disturbances | Treatment of liver<br>disease, but might be<br>inneverable, liver<br>transplant | Vitamin 812                                           |                                                              | Sinptomatic                               |                                               | hanne                 |       |



### WERNICKE encephalopathy

Modified from Elefante A, Puoti G, Senese. Eur J Radiol. 2012.

#### Classic clinical triad :

- Ophtalmoplegia/nystagmus,
- Ataxia
- Rapid cognitve deterioration + Consciousness disturbance







#### **TOXIC/METABOLIC**

# **Extrapontine myelinolysis**

CJD



A 50-year-old man. Initial MRI 2 months after onset (A-D) showed symmetric bilateral striatal FLAIR (**A**)/DWI (**B**) hyperintensities (**A**, **B**; white arrows) with corresponding hypointensities on the ADC map suggesting restricted diffusion (**C**; black arrows). Bilateral globus pallidus hyperintensities were present on T1-weighted images (**D**; green arrows). MRI 1 month later, 3 months after onset (E-H), showed resolution of the prior FLAIR (**E**), DWI (**F**), and ADC (**G**) map abnormalities but no change in the globus pallidus T1 hyperintensities (**H**; green arrows).

M.D. Geschwind Continuum (Minneap Minn) 2016

V.I.T.A.M.I.N.S.

#### **TOXIC/METABOLIC**

CJD

### Hypoglycemic encephalopath



Reprinted with permission from Rosenbloom MH, et al, Neurol Clin Pract. B 2015 American Academy of Neurology.

h

Initial MRI (A-C) showed left frontal (white arrows), left insular (red arrows), bilateral medial occipital (blue arrows), and left caudate (white arrowhead) FLAIR/DWI hyperintensity with restricted diffusion, which is subtle but definitely appreciable. Repeat MRI about 3 weeks later (D-F) showed possible reduced FLAIR/DWI hyperintensity in the left caudate head and medial occipital regions, and possible increased right caudate FLAIR hyperintensity and restricted diffusion (DYF; white arrowheads). A third MRI 1 week later, 1 month after onset (G-I), revealed more intense FLAIR/DWI insular (G, H; red arrows) and frontal cortical hyperintensities (G, H; white arrows) and possible restricted diffusion and FLAIR hyperintensity still present in the caudate heads (G, H; arrowheads). The resolution of occipital cortical ribboning in such a short time argued against a diagnosis of sporadic Jakob-Creutzfeldt disease no sin campania Napoli, 13 dicembre 2019





#### **Emerging Paradigm of CNS Antibody Disorders**

| Neuronal Intracellular<br>(Classicsl Paraneoplastic) | Neuronal Cell-Surface/Synaptic<br>(Autoimmune)   | Astrocytes    | Myelin                      | Other Brain Proteins |
|------------------------------------------------------|--------------------------------------------------|---------------|-----------------------------|----------------------|
| Hu (ANNA-1), Yo, Ri, Ma,<br>CRMP-5, Amphiphysin      | VGKC (LGI-1, CASPR), NMDAm<br>AMPA, GABA-Bm VGCC | AQP4<br>(NMO) | MOG<br>(NMO-like syndromes) | A-Beta<br>(CAA-I)    |
| CANCER associated                                    | Usually NOT cancer associated (i.e. autoimmune)  | Not Cancer    | Not Cancer                  | Not Cancer           |
| Poor                                                 | Good                                             | Good          | Good                        | Poor                 |



40kDe

BOKD4

### AUTOIMMUNE

# Diagnosis

Cell-based Assay (Hec-293m express known antigen)



Cultured dissociated hippocampal neurons (Rat)





# INTRACELLULAR

# NEURONAL CELL-SURFACE



# **Limbic Encephalitis**

### Clinical criteria

- Phenotype (developping over days, weeks, or months):
  - Cognitive decline (memory problems)
  - *Psychiatric* (behavioral changes)
  - Seizures
- Serum: anti-neuron Abs
- > CSF: anti-neuron Abs, mild pleiocytosis and hyperproteinorrachia
- > **EEG**: diffuse or temporal slowing; epileptic activity
- MRI: T2-hyperintensity, T1-atrophy





# **Limbic Encephalitis**

### Antibodies and clinical phenotypes

### Anti-neuronal intracellular antigens

- Anti-Hu: classic L.E.+ cerebellar syndrome
- Anti-Ma2: classic L.E. + diencephalitis
- Anti-CV2: classic L.E + chorea

### Anti-neuronal cell surface antigens

- Anti-VGKC: classic L.E.- MORVAN CJD Like
- Anti-NMDAR: classic L.E. + brainstem encephalitis
- Anti AMPAR: recurrent classic L.E.
- **Anti-GABAbR**: classic L.E + prominent seizures



IDIOPATIC and PARANEOPLASTIC



# **Limbic Encephalitis**

Anti-neuronal intracellular antigens

### Anti-Hu

#### Phenotype:

- L.E.+ sometimes extra-limbic involvement (paraneoplastic encephalomyelitis)
- associated with lung microcitoma (>70%)



MR imaging of the brain demonstrates T2-FLAIR hyperintensity and mild expansion in the right medial temporal lobe (*A*), right insular cortex (not shown), and left dorsal thalamus (not shown), without restricted diffusion (not shown) or postcontrast enhancement (not shown). FDG-PET of the brain demonstrates a hypermetabolic focus within the right medial temporal lobe lesion (*B*). PET of the body demonstrates a hypermetabolic focus in the left lung (*E*),

### Anti-Ma2

#### Phenotype:

- male, <40 years
- L.E. + frequent brainstem and diencephale involvement, with narcolepsia, SIAD, weight increase
- associated with testicular tumor



Axial slices, FLAIR sequences) in patients with limbic, diencephalic, and midbrain encephalitis associated with anti-Ma antibodies.



# **Limbic Encephalitis**

Anti-neuronal <u>cell surface</u> antigens

|                              | NMDAR                                                                                        | VGKC                                      |                                                                                           | AMPAR                       | GABA-b           | Glycine                                                                       |  |
|------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------|------------------|-------------------------------------------------------------------------------|--|
|                              |                                                                                              | LGI1                                      | CASPR2                                                                                    |                             |                  |                                                                               |  |
| Approx n. of published cases | >700<br>in 6 years                                                                           | 250<br>in 3 years                         | 30<br>in 3 years                                                                          | 25<br>in 4 years            | 30<br>in 3 years | 60 in 5 years                                                                 |  |
| Classic<br>phenotype         | Diffuse enchephalitis,<br>psychiatric features,<br>movement disorder,<br>seizures, autonomic | LE: amnesia,<br>seizures,<br>hyponatremia | Morvan's syndrome:<br>dysautonomi,<br>neuropsychiatric,<br>neuromyotonia.<br>Sometimes LE | LE                          | LE +<br>seizures | Progressive<br>encephalomyelit<br>is with rigidity<br>and myoclonus<br>(PREM) |  |
| Tumor                        | Ovarian teratoma<br>(30%)                                                                    | <10%<br>(various)                         | Thymoma (30%)                                                                             | Lung,<br>breast,<br>thymoma | Lung<br>(50%)    | Thymoma (10%)                                                                 |  |

Adapted and modified from Irani, Gelfand, Al-Diwani, Vincent, Annals of Neurology, 2014



# VGKC-antibody complex associated Encephalitis



MR imaging of the brain (A-D) demonstrates multifocal T2-FLAIR hyperintense lesions in the right parieto-occipital region (A), with associated pial/sulcal enhancement (B)and mild cortical restricted diffusion and T2 shinethrough within the subcortical white matter on DWI (C) and the corresponding ADC map (D)


#### AUTOIMMUNE

## NMDAR Antibody Encephalitis (most frequent one)

- Disease of the young (F:M=4:1)
  - 95% <45 years
  - 37% <18 years
- Charcacteristic Clinical Syndrome
  - Vague progrome (HA, fever,
  - <u>Acute/subacute neuropsych</u>
     sometimes even triage to th
  - Amnesia, language dysfunct
  - Seizures
  - Subset with coma and autor
  - Abnormal movement
  - 58% of affected female patients have an ovarian teratoma
  - Brain MRI is abnormal in 30% of cases
  - EEG: extreme delta brush (maximal high-voltage beta activity superimposed on frontally maximal delta waves)
  - Diagnosis is confirmed by CSF abs anti-NMDAR (serum: false negative results in up to 14% of cases)





T2-FLAIR hyperintensity in the left inferior temporal lobe (*A*), left > right insular cortex (*B* and *C*), and left > right cingulate gyrus (*B*–*D*),



#### **AUTOIMMUNE**

## **AMPAR Antibody Encephalitis**

- Median age in the 60s (Female>Male)
- About 70% with an associated cancer (breast, thymus, lung)
- About 70% improve with therapy, but <u>neurological</u> <u>relapses</u> without tumor are frequent and lead to cumulative diysability
- Charcacteristic Clinical Syndrome
  - Limbic encephalitis + prominent psychiatric simptoms and amnesia



Abnormal FLAIR signal involving the cerebral cortex, mainly the medial temporal lobes



## **GABA<sub>b</sub>R Antibody Encephalitis**

- Occurs predominantly in children and young adults
- Charcacteristic Clinical Syndrome
  - Limbic encephalitis + prominent seizures
- Associated with small-cell lung cancer and with other autoantibodies (mainly IgG1)



(a) T2-weighted and (b) FLAIR images of a patient with **GABA**<sub>b</sub>**R** abs and limbic encephalitis show increased signal in the mesial temporal lobes

CONVEGNO SIN CAMPANIA Napoli, 13 dicembre 2019



## Hashimoto Encephalitis

**Prevalence:** 2.1/100.000 **Age:** 45-55 y.; F/M= 5/1 **Clinical phenotype:** 

- Stroke like (aphasia, 65%)
- Progressive cognitive decline (100%) with seizures (70-80%)

#### **Diagnosis:**

- Serum: anti-TPO, -TG Abs
- CSF: mild hyperproteinorrachia
- MR images are usually unremarkable Therapy: I.V. high dose steroids



## **Cellular Inflammation**

- Neurosarcoidosis >
- $\geq$ **Primary SNC Angiitis**
- Post-infective acute encephalomyelitis
- $\geq$ Behcet





#### **AUTOIMMUNE**

### Dramatic neurological debut in a case of Köhlmeier-Degos disease

(malignant atrophic papulosis)

Saracino D. et al. Neurol Sci. 2019



<u>Brain MRI</u>. Axial FLAIR weighted (a, b), Sagittal SE T2 weighted (c) and axial SE T1 post-gadolinium weighted sequences (d). Axial FLAIR MRI sequences show several lesions, namely in paracentral lobule (a) (arrow), right mesencephalic tegmentum, dorsal vermis, left parahippocampal cortex (b) (arrows) and splenium of corpus callosum (c) (arrow).

Axial SE T1 post-gadolinium contrast MRI (d) readily shows diffuse leptomeningeal enhancement (d) especially at the ventral surface of both pons and midbrain, along with obliteration of quadrigeminal cistern (arrowhead).

<u>At autopsy</u>, examination of the CNS revealed diffuse **perivenous lymphocytic meningoencephalitis** with few scattered CD20+ lymphocytes throughout the parenchyma and the vessel wall (e, f); **laminar necrosis** of cortical neurons with accumulation of glycogen, congestion of neocortical vessels and neutrophil infiltrates was evident (g, and higher magnification in h). No evidence of viral particles or nucleic acids was found. H&E: Hematoxilin and Eosin; EP459Y: Anti-CD20 Antibody.

> CONVEGNO SIN CAMPANIA Napoli, 13 dicembre 2019



#### **METASTASIS/NEOPLASMS**





#### **Primary CNS Lymphoma**





Anti-Ma2

PET-FDG



#### **Erdheim-Chester disease**

Rare non-Langerhans-cell histiocytosis



Hyperintense lesions in the pons, bilateral middle cerebellar peduncles and cerebellar hemispheres; (E) Sagittal T1w-Gd MRI sequence showing a homogeneous intense gadolinium enhancement of infundibular stalk



(A) Diffuse bone marrow substutution with foamy hystiocytes and Touton-like multinucleated giant cells along with lymphocytic and eosinophilic infiltration;(B) Bone trabeculae with sclerotic areas.

> CONVEGNO SIN CAMPANIA Napoli, 13 dicembre 2019

## V.I.T.A.M.

#### IATROGENIC



#### **NEURODEGENERATIVE**



...the diagnosis of neurodegenerative RPD requires above all the exclusion of all potentially reversible forms !!

# v.i.t.a.m.i.<mark>N</mark>.s.

## Normal Pressure Hydrocephale (NPH)

The *classic clinical triad*:

- Cognitive impairment (frontal pattern)
- Gait deviations ("stuck to the floor", or "magnetic" movement)
- Urinary incontinence

Test di Fisher (Tap test)



MRI - T1 sequence, lateral view. The corpus callosum is thin (blue arrow) due to dilation of the lateral ventricles (yellow arrow)



Rmeasures the atio between the maximum diameter of the frontal horns of the lateral ventricles and the maximum inner diameter of the skull in the same section (on trensverse images)

#### **Turbolent flow**



FLAIR sequence in axial projection. The ventricles are large and dilated. Around the ventricles the parenchyma is suffering, the white that looks like a hood (red arrow). The liquor in the ventricles has a turbulent flow: the white patches in the center and the back (blue arrows)

#### **Callosal angle**



Patients with NPH have a narrower callosal angle than those with ventriculomegaly linked to atrophy or controls. A normal value is typically between 100-120 °. In patients with NPH the value is lower, between 50-90

#### SYSTEMIC/SEIZURES









PRES Posterior reversible encephalopathy syndrome

#### Epilepticus es Virus

. rt al. Case Rep Neurol 2013

hanced T1-weighted pparent diffusion nset. d–f FLAIR images 1 of the entire temporal oral pole up to the a, d, white arrowheads), e edema is significantly ompared with 1 month ion coefficient map al involvement outside ar of the left precuneus nd MRI. c, f The left d 1 month later, with c arrowheads).

> CONVEGNO SIN CAMPANIA Napoli, 13 dicembre 2019

# Stratified approach to diagnostic testing in rapidly progressive dementia



Modified by: Day & Tang-Wai - Neurodegen. Dis. Manage. 2014



Napoli, 13 dicembre 2019

## Some diagnostic pearls for rapidly progressive dementia

<u>Verify time course</u>: often symptoms began earlier than records state

**<u>Be thorough</u>: try using a mnemonic: VITAMINS** 

<u>CJD is the great mimicker</u>: it can look like anything (and vice versa)

Do not rely on CSF 14-3-3 for CJD diagnosis: interpret CSF biomarkers with caution

Brain MRI with appropriate sequences: contrast, coronal/axial FLAIR, DWI, ADC

<u>Read your own MRIs</u>: most CJD cases will have DWI-positive cortex "cortical ribboning" that has been missed

If diagnosis not clear, get body imaging w/contrast (or consider PET)

Do not forget the basics: common things are common... ...so if it quacks like a duck, it probably is a duck...

... owever, sometimes, the rare diagnosis is the right one

## Acknowledgments

#### National Prion Disease Pathology Surveillance Center Case Western Reserve University, Cleveland, Ohio, USA

| Pierluigi Gambetti |
|--------------------|
| Jiri Safar         |
| Diane Kofskey      |
| Paula Carver       |
| Janis Blevins      |

Qingzhong Kong Wenquan Zou Kay Edmonds Silvio Notari Ignazio Cali'

**University of Cambridge, United Kingdom** *Michel Goedert Maria Grazia Spillantini* 

Indiana University, USA Bernardino Ghetti University of Bologna, Italy Piero Parchi Sabina Capellari

National Neurological Institute 'C. Besta', Italy Giorgio Giaccone Orso Bugiani

**Istituto Superiore di Sanità, Italy** *Maurizio Pocchiari Anna Ladogana* 

**University of Naples "Federico II", Italy** *Andrea Elefante Alessandra D'Amico* 

## ...grazie per l'attenzione

## EEG patterns of interest in rapidly progressive dementia

| EEG finding                                                                                                                                                  | Definition                                                            | Potential etiologies                        |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|--|--|--|--|
| Periodic complexes                                                                                                                                           | Generalized discharges of synchronous high-voltage                    | CJD                                         |  |  |  |  |
|                                                                                                                                                              | spikes or sharp waves                                                 | SSPE                                        |  |  |  |  |
|                                                                                                                                                              |                                                                       | Rarely Alzheimer's disease DLB              |  |  |  |  |
| Extreme $\delta$ -brush                                                                                                                                      | Rhythmic $\delta$ activity (1–3 Hz) with superimposed bursts          | Anti-NMDA receptor encephalitis             |  |  |  |  |
|                                                                                                                                                              | of 20–30 Hz $\beta$ -frequency activity riding on each $\delta$ -wave |                                             |  |  |  |  |
| Triphasic waves                                                                                                                                              | Synchronous, frontally predominant, rhythmic triphasic                | Metabolic disorders (i.e., hepatic          |  |  |  |  |
|                                                                                                                                                              | waves, usually with background slowing                                | encephalopathy) nonconvulsive status        |  |  |  |  |
|                                                                                                                                                              |                                                                       | epilepticus                                 |  |  |  |  |
| PLEDs                                                                                                                                                        | High-voltage sharp potentials over one or both lobes,                 | Herpes simplex encephalitis (temporal PLED) |  |  |  |  |
|                                                                                                                                                              | occurring every few seconds                                           | other focal lesions                         |  |  |  |  |
| Frontal intermittent rhythmic                                                                                                                                | Rhythmic, discontinuous high-voltage $\delta$ -frequency              | Processes involving deep midline structures |  |  |  |  |
| δ-activity                                                                                                                                                   | (1–3 Hz) activity that predominates in frontal regions                | (i.e., hydrocephalus), other focal lesions  |  |  |  |  |
| CID: Creutzfeldt–lakob disease: DLB: Dementia with Lewy bodies: PLED: Periodic lateralized epileptiform discharge: SSPE: Subacute sclerosing panencephalitis |                                                                       |                                             |  |  |  |  |

#### Recommended Initial Screening Tests for Evaluation of a Rapidly Progressive Dementia

| Category    | Initial Screen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Secondary Tier (Depending on Initial Screen and Clinical Scenario)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blood tests | <ul> <li>Complete blood cell count with differential</li> <li>Basic metabolic panel (including calcium, magnesium, phosphorus)</li> <li>Liver function tests Rapid plasma reagin (RPR)</li> <li>Rheumatologic screen (erythrocyte sedimentation rate, antinuclear antibody, and C-reactive protein)</li> <li>Thyroid function tests (thyroid-stimulating hormone [TSH], free thyroxine)</li> <li>Vitamin B12 Human immunodeficiency virus</li> <li>Medication levels as clinically indicated (eg, lithium, phenytoin)</li> </ul> | <ul> <li>Cancer screen (eg, serum protein electrophoresis, serum immunoelectrophoresis, cancer antigen 125)</li> <li>Blood smear Coagulation profile</li> <li>Hypercoagulability testing Homocysteine Methylmalonic acid</li> <li>Additional rheumatologic tests (eg, cytoplasmic antineutrophil cytoplasmic antibody, perinuclear antineutrophil cytoplasmic antibody, double-stranded DNA, Smith antigenribonucleoprotein, SCL-70, SSA/SSB, rheumatoid factor, C3, C4, CH50)</li> <li>Antithyroglobulin and antithyroperoxidase antibodies</li> <li>Lyme antibodies</li> <li>Paraneoplastic/autoimmune antibodies</li> <li>Additional endocrinologic tests (eg, cortisol) Lymphoma markers</li> </ul> |
| Urine       | <ul><li>Urine analysis (with or without culture)</li><li>Urine toxicology screen (if indicated)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul><li>Urine culture</li><li>Heavy metal screen (24 hours)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CSF         | <ul> <li>Cell count and differential Protein</li> <li>Glucose</li> <li>IgG index</li> <li>Oligoclonal bands</li> <li>Venereal Disease Research Laboratory (VDRL)</li> <li>14-3-3 protein western blot</li> <li>Total tau enzyme-linked immunosorbent assay (ELISA)</li> <li>Neuron specific enolase ELISA</li> <li>Real-time quaking induced conversion (RT-QuIC) test</li> </ul>                                                                                                                                                | <ul> <li>Cryptococcal antigena</li> <li>Viral polymerase chain reactions (PCRs), antibodies, and culturesb</li> <li>Bacterial, fungal, acid-fast bacilli stains, and cultures</li> <li>Cytologyd<br/>Flow cytometry</li> <li>Whipple PCR</li> <li>Metagenomic deep sequencing (CSF, biopsy tissue)<br/>Phosphorylated tau, amyloid-"42</li> <li>CSF "2-microglobulin and Epstein-Barr virus PCR (lymphoma)</li> </ul>                                                                                                                                                                                                                                                                                   |
| Imaging     | <ul> <li>Brain MRI (including T1, T2, fluid-attenuated inversion recovery [FLAIR], diffusion-weighted imaging, apparent diffusion coefficient map, hemosiderin sequence) with and without contrast</li> <li>Chest x-ray (if clinically indicated)</li> </ul>                                                                                                                                                                                                                                                                     | <ul> <li>CT head</li> <li>CT chest, abdomen, and pelvis with and without contrast</li> <li>Magnetic resonance angiography/magnetic resonance venography</li> <li>Computed tomography angiography/brain angiogram</li> <li>Magnetic resonance spectroscopy (for lesions or masses)</li> <li>Mammogram</li> <li>Body fluorodeoxyglucose positron emission tomography (FDG-PET)/CT scan</li> <li>Testicular or pelvic ultrasound Carotid ultrasound Echocardiogram</li> </ul>                                                                                                                                                                                                                              |
| Other tests | 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

### Real-time quaking-induced conversion (RT-QuIC)



Responses from reactions seeded with cerebrospinal fluid (CSF) from two sporadic Creutzfeldt-Jakob disease (sCJD) cases and a positive sCJD CSF control.

The RT-QuIC from an unseeded reaction and a reaction seeded with brain homogenate from Alzheimer's disease are also shown. Image courtesy of Neil McKenzie, University of Edinburgh, Edinburgh, UK. AD BH, Alzheimer's disease brain homogenate; RFU, relative fluorescence units; ThT, thioflavin T.



#### **TOXIC/METABOLIC**

### **WERNICKE** encephalopathy



Wernicke encephalopathy (compared to a sporadic Jakob-Creutzfeldt disease case). Fluid-attenuated inversion recovery (FLAIR) (A-D), diffusion-weighted imaging (DWI) (E-H), and apparent diffusion coefficient (ADC) map (I-L) sequences showing FLAIR and DWI hyperintense signal changes involving the periaqueductal gray and midbrain tectum, medial thalami, and perirolandic cortex in the patient with Wernicke encephalopathy. There is relative sparing of the mammillary bodies across all sequences (B,F,J). The ADC sequences (I-L) primarily show subtle hypointensity in the perirolandic cortex (L), corresponding to hyperintensities on FLAIR (**D**) and DWI (**H**). This pattern preferentially involving the perirolandic cortex is the opposite of what we typically see in sporadic Jakob-Creutzfeldt disease (M-P; DWI sequences), in which there is generally sparing of the perirolandic region, particularly the primary motor cortex.

#### Goals of Immunosuppressive Therapy for Autoimmune Encephalitis

- Improve symptoms acutely
- Induce remission of the pathological inflammatory process
- Maintain remission
- Minimize risk from immunosuppression

#### Treat symptoms:

- i.e. neuropsychiatric, seizures, pain, concentration, fatigue, sleep
- Promotion of neurorehabilitation



### Wernicke







#### **AUTOIMMUNE**

### Neuronal surface antibody associated

# Table 2 Neuronal surface antibody associated syndromes Syndromes

| Syndrome                 | Antibodies               | Particular clinical features                                                                                                                                              | Possible tumours                                                       | lmmunotherapy<br>response | In vitro evidence of Ab<br>pathogenicity                            | Frequency or No of<br>cases reported                               |
|--------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|
| NMDAR-Ab<br>encephalitis | NMDAR                    | Dyskinetic movements,<br>decreased consciousness,<br>psychiatric presentation in<br>young women. Epilepsy and<br>abnormal movements more<br>frequent at onset in children | Ovarian teratoma. Rare<br>in children. Up to 50%<br>after age 18 years | Yes                       | In vitro and in vivo reduction<br>of NMDA receptors                 | Common syndrome.<br>More than 500 cases<br>reported, mainly in USA |
| LE                       | LGI1<br>CASPR2<br>(<10%) | Male predominance, hyponatraemia,<br>faciobrachial dystonic seizures,<br>myoclonus                                                                                        | Rare with LGI1-Ab.<br>Thymoma in some<br>with CASPR2-Ab                | Yes                       | In vitro production of<br>epileptogenic activity in<br>brain slices | Common syndrome<br>More than 600 cases<br>reported, mainly in UK   |
|                          | AMPAR                    | Possible isolated psychiatric<br>symptoms                                                                                                                                 | 70% (lung, breast,<br>thymus)                                          | Yes, frequent<br>relapses | Downregulation of AMPA receptors                                    | 14                                                                 |
|                          | GABA <sub>B</sub> R      | Prominent seizures                                                                                                                                                        | 60% (SCLC)                                                             | Yes                       | None                                                                | 25                                                                 |
|                          | mGluR5                   | Ophelia syndrome                                                                                                                                                          | Hodgkin lymphoma                                                       | Unknown                   | None                                                                | 2                                                                  |
| Morvan's<br>syndrome     | CASPR2                   | Encephalopathy, peripheral<br>nerve hyperexcitability,<br>dysautonomia                                                                                                    | Thymoma                                                                | Yes                       | Not tested                                                          | 9                                                                  |
| PERM                     | GlyR                     | Encephalomyelitis with<br>myoclonus, rigidity and<br>brainstem signs                                                                                                      | Thymoma                                                                | Yes                       | Not tested                                                          | 6                                                                  |
| Cerebellar<br>ataxia     | VGCC                     | Possible coexistence<br>of LEMS                                                                                                                                           | SCLC                                                                   | Poor                      | Not tested                                                          | 16                                                                 |
|                          | mGluR1                   | Remote history of Hodgkin<br>lymphoma                                                                                                                                     | Hodgkin lymphoma                                                       | Yes                       | In vivo                                                             | 3                                                                  |

The frequencies given depend on reported cases. Many cases are being diagnosed but are not reported.

Ab, antibody; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; CASPR2, contactin associated protein 2; GABA<sub>B</sub>R, gamma-aminobutyric acid B receptor; GlyR, glycine receptor; LE, limbic encephalitis; LEMS, Lambert-Eaton myasthenic syndrome; LGI1-Ab, leucine rich glioma inactivated 1 protein antibody; mGluR, metabotropic glutamate receptor; NMDA, N-methyl-D-aspartate; NMDAR, N-methyl-D-aspartate receptor; PERM, progressive encephalomyelitis with rigidity and myoclonus; SCLC, small cell lung cancer; VGCC, voltage gated calcium channel.

#### AUTOIMMUNE

# The clinical presentation of autoimmune encephalopathies (AEs) varies greatly and includes cognitive decline and psychiatric changes developing over days, weeks, or months, often associated with seizures.

Myoclonus, extrapyramidal symptoms, ataxia, or signs of hypothalamic or autonomic dysfunction can also be observed.

The term limbic encephalitis (LE) is often used to describe a classic phenotype of AE characterized by subacute onset of behavioral changes, memory problems, and seizures. But frequently the disease is multifocal and other parts of the CNS are affected (such as hypothalamus or brainstem), characterizing an autoimmune encephalomyelitis.

Clinical features and demographics might give clues as to the antibody causing an AE.

**Encephalopathy due to VGKC complex antibodies** (caused by LGI-1 receptor antibodies) can cause RPD that resembles CJD, though hyponatremia due to SIADH might be a clue as it is not typical of CJD, but is found in about 60% of cases with VGKC complex antibody encephalopathy.

**AMPAR antibody encephalitis is** more frequent in middle-aged women; in a male under 50, AMPAR antibody encephalitis is associated with SCLC, breast or thymus tumors,

Anti-Ma2 antibodies (usually associated with testicular tumors) and testicular ultrasound should be considered. And

**GABA** R antibody encephalitis is associated with LE and frequent seizures.

Several excellent reviews on these antibody-mediated encephalo- pathies have recently been published.:

- Titulaer MJ, Soffietti R, Dalmau J, et al. Screening for tumours in paraneoplastic syndromes: report of an EFNS task force. Eur J Neurol 2011;18:19-e3.
- Flanagan EP, Caselli RJ. Autoimmune encephalopathy. Semin Neurol 2011;31:144–157.
- Lancaster E, Martinez-Hernandez E, Dalmau J. Encephalitis and antibodies to synaptic and neuronal cell surface proteins. Neurology 2011;77:179–189.
- Mckeon A, Lennon VA, Pittock SJ. Dementia: immunotherapy-responsive dementias and encephalopathies. Continuum 2010;16:80–101.

## Idrocefalo Normoteso (NPH)



RM in sequenza T1 pesata, in proiezione laterale che mostra un idrocefalo importante. Il corpo calloso è sottile per la dilatazione dei ventricoli laterali (freccia gialla) . Si confronti con la figura precedente.



RM in sequenza T1 pesata, in proiezione laterale che mostra un idrocefalo importante. Il corpo calloso è sottile per la dilatazione dei ventricoli laterali (freccia gialla).



Sequenza FLAIR in proiezione assiale. I ventricoli sono ampi e dilatati. Attorno ai ventricoli il parenchima è sofferente, il bianco che sembra un cappuccio ( freccia rossa ), ed è tipico delle situazioni di idrocefalo. Il liquor nei ventricoli ha un flusso turbolento: le chiazze bianche al centro e posteriormente (freccia blu).

# Cognitive domains and available screening tests

| Tools                                                                                                                                                                     | Executive function                                                                                                                                                     | Memory                                                                                                                                   | Language                                                                          | Visuospatial                                                                                                                           | Arithmetic                          | Praxis                                                                                | Facial recognition             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------|--------------------------------|
| Localization                                                                                                                                                              |                                                                                                                                                                        |                                                                                                                                          |                                                                                   |                                                                                                                                        |                                     |                                                                                       |                                |
| Lobe in the<br>brain                                                                                                                                                      | Frontal                                                                                                                                                                | Temporal                                                                                                                                 | Dominant<br>hemisphere                                                            | Biparietal and occipital                                                                                                               | Dominant parietal                   | Parietal                                                                              | Right temporal                 |
| Sample<br>bedside tests                                                                                                                                                   | Modified Trails<br>Making test, digit<br>span, spelling W-O-<br>R-L-D backwards,<br>serial 7s, verbal<br>fluency, letter<br>cancellation,<br>Wisconsin card<br>sorting | Orientation, learning<br>and delayed recall,<br>logical (story) memory,<br>free-cued recall,<br>California adult verbal<br>learning test | Reading,<br>writing, naming,<br>comprehension,<br>repetition, semantic<br>fluency | Cube copy,<br>intersecting<br>pentagons,<br>Rey-Osterrieth<br>complex figure,<br>block design,<br>figure (i.e., clock)<br>construction | Calculations (simple<br>arithmetic) | Completion<br>of cued motor<br>plans/actions,<br>figure (i.e., clock)<br>construction | Identify famous<br>faces [101] |
| Practical screening tests                                                                                                                                                 |                                                                                                                                                                        |                                                                                                                                          |                                                                                   |                                                                                                                                        |                                     |                                                                                       |                                |
| MoCA                                                                                                                                                                      | +                                                                                                                                                                      | +                                                                                                                                        | +                                                                                 | +                                                                                                                                      | +                                   | +                                                                                     |                                |
| MMSE                                                                                                                                                                      | +                                                                                                                                                                      | +                                                                                                                                        | +                                                                                 | +                                                                                                                                      | +                                   | +                                                                                     |                                |
| Clock draw                                                                                                                                                                | +                                                                                                                                                                      |                                                                                                                                          |                                                                                   | +                                                                                                                                      | +                                   | +                                                                                     |                                |
| SLUMS                                                                                                                                                                     | +                                                                                                                                                                      | +                                                                                                                                        | +                                                                                 | +                                                                                                                                      | +                                   | +                                                                                     |                                |
| Short portable<br>mental status<br>questionnaire                                                                                                                          | +                                                                                                                                                                      | +                                                                                                                                        |                                                                                   |                                                                                                                                        | +                                   |                                                                                       |                                |
| +: Domain assessed by screening test; MMSE: Mini-Mental Status Examination; MoCA: Montreal Cognitive Assessment; SLUMS: Saint Louis University Mental Status examination. |                                                                                                                                                                        |                                                                                                                                          |                                                                                   |                                                                                                                                        |                                     |                                                                                       |                                |

Modified by: Day & Tang-Wai - Neurodegen. Dis. Manage. 2014

## **Human Prion Diseases**



Transverse showing bilateral anterior basal ganglia high signal (arrowheads)

Bilateral and symmetrical high signal in the pulvinar nuclei of the thalamus the *'pulvinar sign*' of variant CJD

Modified by Mackenzie G and Will R. Creutzfeldt-Jakob disease: recent developments [version 1]. F1000Research 2017, 6:2053 (doi: 10.12688/f1000research.12681.1)

#### Pathogenic mutations and polymorphisms of the human prion protein



Autoimmune Causes of Brain Dysfunction – Breaking down barriers between Neurology and Psychiatry

#### Autoimmune Encephalitis in Postpartum Psychosis

Veerle Bergink, M.D., Ph.D., Thias Armangue, M.D., Maarten J. Titulaer, M.D., Ph.D., Sander Markx, M.D., Josep Datmax, M.D., Ph.D., Steven A Kushner, M.D., Ph.D.

 2% of women with postpartum psy women cared for in a dedicated mot
 Another 2% exhibited abnormal st.

One Brain, Two Specia Neuronal Autoantibodi Postpartum Psychosis

Jethny M. Gettent M.D. MAS

#### Encephalitis and Antibodies to Dipeptidyl-Peptidase-Like Protein-6, a Subunit of Kv4.2 Potassium Channels

Anna Bonnet, BL<sup>1</sup> Jeffrey M. Gelfand, MO<sup>1</sup> Nana Gress-Anthas, PhD<sup>1</sup> Hyp Young Jeong, PhD<sup>1</sup> Michael Wahh, MD<sup>4</sup> Kick Roberts, MO<sup>1</sup> Eugenia Marthes: Hemandez, MD<sup>4</sup> Myrna R. Rosenkeld, MD, PhD<sup>17</sup> Rita Balvar-Gender, PhD<sup>4</sup> Francesc Gravit, MD<sup>1</sup> Bennetics Riefy, PhD<sup>1</sup> and Josep Datmas, MD, PhD<sup>17,8</sup>

#### Annals of Neurology, 2013

#### DPPX potassium channel antibody Emquency, clinical accompaniments, and outcomes in 20 patients

Neurology, 2014

### DPPX Encephalitis



GI prodrome with intense diarrhea (Note that the gut has more neurons than the spinal cord and gut neurons (myenteric plexus) express these antigens)

- Hyperexcitability seizures, myoclonus, exaggerated startle
- Encephalopathy

Proposed non-evidence-based treatment algorithm for autoimmune paraneoplastic and non-paraneoplastic encephalopathies







## edema vasogenico



Cortical Microbleeds CMBs

Siderosi Superficiale Corticale

# Diagnostic MRI of the brain in select cases of rapidly progressive dementia



(A & B) CJD: axial fluid-attenuated inversion recovery sequences (FLAIR) images demonstrating striatal (A) thalamus and (B) cortical (arrows) T2-hyperintensities. (C) Limbic encephalitis: coronal FLAIR images demonstrating bilateral limbic/hippocampal T2-hyperintensities.

(D & E) Herpes simplex encephalitis: axial T1-weighted images demonstrating right anteromedial temporal lobe hyperintensities.

(F) Wernicke's encephalopathy: axial FLAIR images demonstrating dorsomedial thalamic T2-hyperintensities. (G) Hepatic encephalopathy: sagittal T1-weighted images demonstrating diencephalon hyperintensity. (H & I) Cerebrovascular disease.
 (H) Axial FLAIR images demonstrating strokes and diffuse ischemic white matter changes. (I) Axial gradient-echo images demonstrating bilateral anterior and dorsomedial thalamic hemorrhage causing acute-onset amnesia. (J) CNS vasculitis: axial T1-weighted images with gadolinium demonstrating enhancement of vessels in the right hemisphere (arrows).

# Cerebral amyloid angiopathy-related inflammation



Modified with permission from Crosta F, et al, Case Rep Neurol Med. www.hindawi.com/journals/crinm/2015/483020/. B 2015 Francesca Crosta et al.

An elderly man presented with relatively acute onset left hemiparesis, left homonymous hemianopia, dysarthria, spatial and temporal disorientation, sensory aphasia, and psychomotor slowness. Cerebral amyloid angiopathy-related inflammation was suspected and the finding of APOE genotype (4/(4 supported the diagnosis. Anti-amyloid-" (A") autoantibody concentration in CSF was elevated at 55.9 ng/mL. Physical therapy and corticosteroid therapy with dexamethasone 24 mg/d were started and the patient showed clinical improvement. Initial axial fluid-attenuated inversion recovery (FLAIR) MRI shows bilateral hyperintense lesions (A) and gradient recalled echo (GRE) image shows cortical and subcortical microhemorrhages (B). After 1 month of steroid therapy, FLAIR MRI (C) and GRE (D) sequence show reduction of both cerebral edema and microhemorrhages.


### Enchephalitis is a major public health problem

#### UNITED STATES

- \$ 2.0 billion USD hospital charges in 2010
- >260,000 U.S. hospitalizations 1998-2010
- About 20,000 hospitalizations per year
- 5.7% fatal, 10.1% if HIV/AIDS, 17,1% transplant

#### ENGLAND, ITALY, AUSTRALIA

- 5-6/100,000 incidence

|                                | Year | Popuation                          | Infectious | Inflammatory /<br>Autoimmune | Unknown    |
|--------------------------------|------|------------------------------------|------------|------------------------------|------------|
| Sing et al.<br>Neurology       | 2015 | Adult - Mayo Clinic                | 48%        | 22%                          | <u>30%</u> |
| Pillai et al.<br>Pediatrics    | 2015 | Children - Sydney/NSW              | 38%        | 34%                          | <u>28%</u> |
| Saraya et al.<br>BMC Neurology | 2013 | Children/Adult - Thailand          | 24%        | 25%                          | <u>52%</u> |
| Granerod et al.<br>Lancet ID   | 2010 | Children/Adult - England           | 42%        | 21%                          | <u>37%</u> |
| Maillers et al.<br>CiD         | 2009 | Children/Adult - France            | 52%        | Not sampled                  | <u>48%</u> |
| Olsen et al.<br>EiD            | 2015 | Children/Adult - Thailand          | 36%        | Not sampled                  | <u>64%</u> |
| Glaser et al.<br>CiD           | 2006 | Children/Adult - CA Enceph Project | 29%        | 8%                           | <u>63%</u> |

## Cause of Enchephalitis is often UNSOLVED

I sistema limbico possiede due componenti:

una parte relativa alla corteccia,

- Giro del cingolo
- Paraippocampo
- Ippocampo
- Corteccia relativa ai nuclei septali

una profonda

- amigdala
- formazione reticolare
- nucleo anteriore del talamo
- parte dell'ipotalamo
- nuclei abenulari

Il sistema limbico opera influenzando il <u>sistema endocrino</u> e il <u>sistema nervoso</u> autonomo. È largamente connesso con il <u>Nucleus accumbens</u> tramite i circuiti cortico-striato-talamici, la cui degenerazione è stata associata all'insorgere di sindromi <u>schizofreniche</u>.

Inoltre il sistema limbico riceve proiezioni dopaminergiche dal <u>mesencefalo</u> che danno vita alla *via <u>dopaminergica</u> mesolimbica* correlata ai fenomeni di gratificazione e quindi all'effetto delle sostanze d'abuso (<u>oppioidi</u> endogeni e alcune <u>droghe</u> trovano un'abbondanza di recettori in queste strutture cerebrali)<sup>[16]</sup>.

Le proiezioni noradrenergiche provenienti dal nucleo pontino del locus coeruleus (così come le fibre serotoninergiche<sup>[17]</sup>) sono invece responsabili degli attacchi di panico, ansia, paura di morire, senso di soffocamento e derealizzazione<sup>[16]</sup>, tutti sintomi che si rinvengono nelle crisi epilettiche della corteccia limbica<sup>[16]</sup>.

Le proiezioni colinergiche dei nuclei del setto sono invece fondamentali per il mantenimento della memoria: lesioni di tali nuclei portano a disturbi della memoria, come nelle <u>demenze<sup>[11]</sup></u>.

Il sistema limbico è strettamente connesso alla <u>corteccia</u> <u>prefrontale</u>. Molti scienziati ritengono che questi circuiti limbico-frontali siano coinvolti nei meccanismo di presa di decisione in base a reazioni emozionali.

## Diagnostic Breakdown of Non–Jakob-Creutzfeldt Disease Rapidly Progressive Dementia Referrals to Three Jakob-Creutzfeldt Disease

| San Francisco (UCSF),<br>Cohort N = 104 (21) <sup>b</sup>    | %   | German Cohort <sup>7</sup><br>N = 124 (37) <sup>b</sup>             | %   | National Prion Disease Pathology<br>Surveillance Center (NPDPSC)<br>Cohort <sup>8</sup> N = 304 (304) <sup>b</sup> | %   |
|--------------------------------------------------------------|-----|---------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------|-----|
| Autoimmune/antibody-mediated <sup>c</sup>                    | 13  | Alzheimer disease                                                   | 27  | Alzheimer disease                                                                                                  | 51  |
| Unclassified dementia                                        | 13  | Unclassified dementia                                               | 16  | Vascular disease                                                                                                   | 12  |
| Psychiatric                                                  | 12  | Cerebrovascular (vascular<br>dementia, cerebrovascular<br>accident) | 9   | Immune mediated                                                                                                    | 9   |
| Dementia with Lewy bodies                                    | 8   | Encephalitis, unknown                                               | 8   | Neoplasia                                                                                                          | 8   |
| Encephalitis, not otherwise specified                        | 8   | Parkinson disease                                                   | 5   | Infections                                                                                                         | 5   |
| Neoplasm                                                     | 8   | Psychiatric                                                         | 5   | Unspecified degenerative disease                                                                                   | 3   |
| Frontotemporal dementia with or without motor neuron disease | 7   | Motor neuron disease                                                | 2   | Frontal lobe degeneration                                                                                          | 3   |
| Corticobasal syndrome or corticobasal degeneration           | 6   | Multiple sclerosis                                                  | 2   | Metabolic                                                                                                          | 2   |
| Alzheimer disease <sup>d</sup>                               | 5   | Paraneoplastic                                                      | 2   | Hippocampal sclerosis                                                                                              | 2   |
| Central nervous system vasculitis                            | 3   | Toxicity                                                            | 2   | Dementia with Lewy bodies                                                                                          | 1   |
| Encephalopathy, not otherwise specified                      | 3   | Alcohol induced                                                     | 2   | Tauopathy, not otherwise specified                                                                                 | 1   |
| Leukoencephalopathy                                          | 3   | Brain tumor                                                         | 2   | Hereditary diffuse leukoencephalopathy with spheroids                                                              | 1   |
| Progressive supranuclear palsy                               | 3   | Chronic epilepsy                                                    | 2   | Progressive supranuclear palsy                                                                                     | 1   |
| Vascular dementia                                            | 2   | Corticostriatonigral degeneration                                   | 2   | Other <sup>e</sup>                                                                                                 | 2   |
| Other <sup>e</sup>                                           | 8   | Familial spastic paraplegia                                         | 2   | Total                                                                                                              | 100 |
| Total                                                        | 100 | Hashimoto encephalopathy                                            | 2   |                                                                                                                    |     |
|                                                              |     | Hereditary ataxia                                                   | 2   |                                                                                                                    |     |
|                                                              |     | Huntington disease                                                  | 2   |                                                                                                                    |     |
|                                                              |     | Metabolic disorder                                                  | 2   |                                                                                                                    |     |
|                                                              |     | Primary central nervous<br>system lymphoma                          | 2   |                                                                                                                    |     |
|                                                              |     | Other <sup>e</sup>                                                  | 4   |                                                                                                                    |     |
|                                                              |     | Total                                                               | 100 |                                                                                                                    |     |

# Causes of rapidly progressive dementia.

A definitive cause of RPD was identified in 95.4% (644 out of 675) of patients included in the five largest case series

- (A) All causes (n = 644)
- (B) Secondary causes (n = 121)





1. Geschwind MD, Shu H, Haman A, Sejvar JJ, Miller BL. Rapidly progressive dementia. Ann. Neurol. 64(1), 97–108 (2008).

2. Josephs KA, Ahlskog JE, Parisi JE et al. Rapidly progressive neurodegenerative dementias. Arch. Neurol. 66(2), 201–207 (2009).

3. Papageorgiou SG, Kontaxis T, Bonakis A, Karahalios G, Kalfakis N, Vassilopoulos D. Rapidly progressive dementia: causes found in a Greek tertiary referral center in Athens. Alzheimer Dis. Assoc. Disord. 23(4), 337–346 (2009).

4. Poser S, Mollenhauer B, Kraubeta A et al. How to improve the clinical diagnosis of Creutzfeldt–Jakob disease. Brain 122, 2345–2351 (1999).

5. Sala I, Marquie M, Sanchez-Saudinos MB 24 et al. Rapidly progressive dementia: experience in a tertiary care medical center. Alzheimer Dis. Assoc. Disord. 26(3), 267–271

# v.i.t.<mark>A</mark>.m.i.n.s.

#### AUTOIMMUNE

Antibody Reactivity and Pathological Features of Encephalitis Associated with Antibodies against Neuronal Cell-Surface Antigens as Compared with Encephalitis Associated with Antibodies against Intracellular Antigens



Dalmau J. and Graus F. N Engl J Med. 2018

# Causes of rapidly progressive dementia stratified by rate of progression and potential reversibility



Disease etiologies in the top right quadrant (shaded) are typically associated with the most rapidly progressive presentations and the greatest potential for response to treatment with appropriate treatments.

<sup>†</sup>Associated with marked fluctuations in course; neurodegenerative disease with prominent fluctuations implies a diagnosis of dementia with Lewy bodies.