

Neuromodulazione periferica

Massimiliano Valeriani^{1,2}

¹Division of Neurology, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy ²Center for Sensory-Motor Interaction (SMI), Aalborg University, Denmark

Applications:

• Pain

TENS, peripheral nerve stimulation (usually invasive)

- Dystonia
- Spasticity
- Neuro-urological dysfunction
- Stipsis (gut inflammation)

-Frequency of stimulation: usually around 100 Hz (also LF TENS) -Stimulated area: proximal to painful region

TENS reduces the amplitude of the brain responses evoked by the nociceptive input (laser evoked potentials – LEPs)

Contents lists available at SciVerse ScienceDirect

Clinical Neurophysiology

CrossMark

Modulation of laser-evoked potentials and pain perception by transcutaneous electrical nerve stimulation (TENS): A placebo-controlled study in healthy volunteers

François Vassal^{a,b,*}, C. Créac'h^{b,c}, Ph. Convers^{b,c}, B. Laurent^{b,c}, L. Garcia-Larrea^b, R. Peyron^{b,c}

OTHER PAIN (AD KAYE AND N VADIVELU, SECTION EDITORS)

Transcutaneous Electrical Nerve Stimulation in Relieving Neuropathic Pain: Basic Mechanisms and Clinical Applications

Tahmineh Mokhtari^{1,2} • Qiaoyue Ren^{1,2} • Nuo Li³ • Faguang Wang⁴ • Yanzhi Bi^{1,2} • Li Hu^{1,2,5}

Authors (year)	Research type	Type of neuropathic pain	Number of participants	Type of TENS	Electrode placements	Stimulus parameters	Intervention duration	Main results	
Kumar et al. (1998) [73]	A single-blind placebo- controlled randomized study	PNP-DPNP	 n = 23 patients who failed to respond to amitriptyline or who only had partial relief Groups: Sham and amitriptyline (n=9) TENS and amitriptyline (n=14) 	-	Four self-adhesive elec- trodes: 1) 3 in. above the patella and 3 in. medially, over the vastus medialis oblique 2) 3 in. above patella and 3 in. laterally, over the lower portion of vastus lateralis 3) on the neck of fibula 4) on the gastrocnemius muscle about 3 in. below the center of popilical fossa	4 ms ≤ 35 mA 25–35 V 2-70 Hz	12 weeks	 Symptomatic improvement occurred in 12 (85%) patients Five (36%) of the patients became asymptomatic Effective for patients who failed amitriptline treatment Pain scores declined from 3.2 ± 0.2 to 1.4 ± 0.4. 66 ± 10% overall reduction in pain 	
Somers and Somers (1999) [72]	A case report	PNP-DPNP	A 73-year-old woman	HF	 3 cm (1/2 in) lateral to the left/right posterior superior iliac spine on the back 	200-400 ms 44-60 mA 80 Hz	20 min/time occasionally for 1 to 2 h during the day and more often at night 17 days	Following 20 min of TENS on the first day, a 38% reduction in intensity of pain After 17 days, the subject reported no pain following 20 min of TENS and she could sleep through the night	•
Dubinsky and Miyasaki (2010) [78]	A systematic review	PNP-DPNP	-	LF HF Sham	-	-	-	Modest reduction in pain severity for TENS compared to sharn TENS A larger proportion felt benefit with high-frequency external muscle stimulation compared to TENS	
Pieber et al. (2010) [77]	A systematic review	PNP-DPNP	-	-	-	-	-	Beneficial effects with prolonged use over an average period of 1.7 years	
Jin et al. (2010) [23]	A meta-analysis of RCTs	PNP-DPNP	n = 78	LF Sham Other Frequenci-es	-	-	12 weeks	Significant reductions in mean pain score in four to 6 weeks follow-up (16.6%). Improvement in overall neuropathic symptoms in 12 weeks follow-up (70%)	
Gosszau et al. (2011) [22]	A single-blind placebo- controlled randomized study	PNP-DPNP	n = 41 Groups: TENS (n = 22) Placebo (n = 19)	IF	Proximal dorsum pedis and the top of the caput fibulae on both legs	30-40 μA 2 Hz	30 min/time 3 times/week 4 weeks	No adverse enects No significant differences in the pain reduction between TENS and sham group No benefit for the patients' general life condition No side effects during and after the therapy	
Naderi Nabi et al. (2015) [76]	A single-blind, randomized clinical trial	PNP-DPNP	n = 60 Groups: TENS (n = 30) PRF (n = 30)	HF	Two electrodes: 1) on the upper shin 2) above the ankle	0.2 ms 2 to 3 times sensory threshold 50 Amp 80 Hz	20 min/session 10 sessions every other day	Decreased pain severity (NRS) from 6.10 at baseline to 3.96, 5.23, and 5.90 at the first week, 1 month, and 3 months visits after treatment, respectively Long-term effects remained controversial	

Table 1 Analgesic effects of TENS on peripheral and central neuropathic pain

Authors (year)	Research type	Type of neuropathic pain	Number of participants	Type of TENS	Electrode placements	Stimulus parameters	Intervention duration	Main results
							day on the continuous setting that automatically alternates between 1-h treatment and 1-h rest pe- riods (i.e., between 2 and	
Lee et al. (2019) [111]	A double-blind placebo- controlled randomized pilot study	PNP-cancer pain with radiation	n = 40 patients with head and neck cancer with 4 to 6 weeks radiation Groups: Active (n = 12) Placebo (n = 12) No TENS (n = 16)	HF	Four round adhesive electrodes: 1) bilaterally on the TMJ (one third of distance from the ear and nose) 2) bilaterally upper neck area (2 cm from the spine, i.e., cervical 1 and 2)	100 µs 125 Hz	30 min/time once/week over 3 weeks	Active TENS reduced VAS (from to 1.9) and MPQ (from 6.8 to 3 scores in patients
Kolsek (2012) [90]	A retrospective observational study	PNP-herpes zoster	n = 102 patients Groups: TENS $(n = 29)$ Antiviral drug $(n = 28)$ Antiviral drug with TENS (n = 24) No therapy $(n = 21)$	HF	Two patches: 1) paravertebral region 2) the other side along the nerve	I-5 mA 20-40 Hz	30 min/time 5 times/week 2 or 3 weeks	The incidence of PHN was zero in herpes zoster patients treated w TENS
Stepanović et al. (2015) [92]	A multicenter prospective, randomized intervention study	PNP-herpes zoster	n = 222 patients with a new onset of HZ Groups: Control (n = 38) TENS (n = 36) Antiviral agents (n = 71) TENS and Antiviral agents (n = 72)	HF	Two electrodes: 1) Near the root of affected nerve 2) In the course of that nerve	0.02 ms 3–30 mA 20–40 Hz	30 min/time 10–15 days	The odds for subacute herpetic neuralgia are the lowest in acut herpes zoster patients treated w TENS
Warke et al. (2006) [99]	A randomized, placebo-controlled clinical trial	CNP-MS	n = 90 Groups: LF-TENS (n = 30) HF-TENS (n = 30) Placebo (n = 30)	LF HF	Lumbar spine (3 cm distance on either side of the spinous processes)	LF: 200 µs 4 Hz HF: 200 µs 110 Hz	45 min/time 2 times/day 6 weeks	Both methods (LF and HF) reduce pain in 50% of patients Mean weekly VAS score difference were - 16.59 mm for LF-TENS and - 20.60 mm for HF-TENS
Miller et al. (2007) [98]	A single-blind clinical trial	CNP-MS	n = 32 Groups: TENS (60 min/day, n = 16) TENS (8 h/day, n = 16)	HF	Either end of the quadriceps muscle	0.125 ms 100 Hz	60 min/day or 8 h/day daily 2 weeks	TENS does not appear effective in reducing spasticity Significant reduction in muscle spasm (from 4.1 to ~2.7) and p (from 3.9 to ~2.2) in 8 h group Longer application (8 h) might be useful in treating MS patients w pain and muscle spasm
Cuypers et al. (2010) [112]	A clinical trial	CNP-MS	n = 56 Groups: n = 26 MS patients (n = 15 intervention, n = 11 control)	HF	Median nerve region of the dominant hand	250 µs 100 Hz	1 h/day 3 weeks	Long-lasting improvements in tac sensitivity achieved by repetiti stimulation of sensory afferents MS patients but not in healthy subjects Increased sensitivity was not only

Authors (year)	Research type	Type of neuropathic pain	Number of participants	Type of TENS	Electrode placements	Stimulus parameters	Intervention duration	Main results
			n = 30 healthy subjects ($n = 15$ intervention, n = 15 control)					but also expanded to the ulnar nerve area
Nortbrink (2009) [101]	A clinical trial	CNP-SCI	n = 24 Groups: LF-TENS (n = 12) HF-TENS (n = 12)	LF HF	Paraspinal site	LF: 180 µs 2 Hz HF: 180 µs 80 Hz	30–40 min/time 3 times/day 2 weeks	Favorable effects for 29% of the patients with HF and 38% of th patients with LF stimulation on 5-point global pain-relief scale Median values of pain were 4 at baseline and 3.8 after the last H session Median values of pain were 4 at baseline and 3.9 after the last LI
Celik et al. (2013) [102]	A prospective, randomized and controlled study	CNP-SCI	n = 33 Groups: TENS (n = 17) Sham (n = 16)	LF	Two channels with four electrodes: 1) 2 electrodes: proximal parts of the region with pain 2) 2 electrodes: distal parts	200 µs 50 mA 4 Hz	30 min/time daily 10 days	Season Significant reduction of VAS score from 5.79 to 3.88 on the twelfth day in LF-TENS group
Bi et al. (2015) [113]	An RCT	CNP-SCI	n = 52 Groups: TENS $(n = 26)$	LF	Region with pain	< 200 µs 50 mA 2 Hz	20 min/time 3 times/week 12 weeks	Significant decrease in the pain intensity scores after TENS intervention
Ozkul et al. (2015) [103]	A randomized controlled cross-over trial	CNP-SCI	Similar $(n = 20)$ n = 24 Groups: TENS first, then visual illusion (n = 12) Visual illusion first, then TENS (n = 12)	ΗF	Both sides of the spinal region	180 µs 0–100 mA 80 Hz	15 min/day 5 days/week 2 weeks	Pain intensity decreased immediatel after both applications Significant decrease in most (VAS, from 8.92 to 8.41) and less (VAS from 2.62 to 2) pain intensity aft TENS application for 2 weeks, but not after 2 weeks for visual illusion Significant decrease in negative effect of pain on mood, relationships with others, and sleep after TENS application Both therapies can be used as a supportive or an alternative
Price and Pandyan (2001) [108]	A systematic review	CNP-CPSP (shoulder pain)	n = 170 ES including TENS, functional ES or other	-	_	-	_	No significant change in pain incidence or change in pain intensity after ES treatment compared with control Significant treatment effect in favor of ES for improvement in pain-free range of passive lateral rotation of humerus ES reduced the severity of

glenohumeral subluxation, but no

Spinal Cord

The simultaneous activation of non nociceptive and nociceptive fibres dampens the nerve conduction along the last ones at presynaptical level

doi:10.1111/ejn.13035

NEUROSYSTEMS

Cortical inhibition of laser pain and laser-evoked potentials by non-nociceptive somatosensory input

Elisa Testani,¹ Domenica Le Pera,² Claudio Del Percio,³ Roberto Milucci,⁴ Alfredo Brancucci,⁵ Costanza Pazzaglia,⁶ Liala De Armas,² Claudio Babiloni,^{9,7} Paolo María Rossini¹ and Massimiliano Valeriani^{4,0}

We tested the effect of a single nonnociceptive electrical stimulus on the nociceptive input with a 1:1 ratio

In this condition, non-painful electrical stimuli inhibit LEPs at supra-spinal level

But...

... this is not an ecological condition, since both in daily life and clinical context it is higher frequency non-painfuli stimuli to reduce the pain perception

Laser evoked potential amplitude and laser-pain rating reduction during high-frequency non-noxious somatosensory stimulation

Massimiliano Valeriani^{a,b,*}, Costanza Pazzaglia^c, Vincenzo Rizzo^d, Angelo Quartarone^{e,f}, Catello Vollono^g

1) Non-nociceptive stimuli inhibit the LEP amplitude

- 2) The pattern of inhibition suggests a spinal mechanism
- 3) Rostro-caudal and transversal propriospinal interneurons (Fitzgerald, 1982, 1983) can account for these findings

External trigeminal nerve stimulation (eTNS) - Cefaly® stimulator

Figure 5. Relative change in mean VAS scores at 1 hour, 2 hours, and 24 hours after treatment, compared to baseline.

106 patients

- biphasic rectangular impulses
- pulse width 250 μs
- frequency 100 Hz
- maximum intensity 16 mA
- Duration 60 min

Chou et al., Cephalalgia 2018

Remote electrical neuromodulation (REN)

- Nerivio® stimulator

biphasic rectangular impulses
pulse width 400 μs
frequency 100-120 Hz
maximum intensity 40 mA
duration 45 minutes

(B)

MBS response

Yarnitski et al., Headache 2019

Key Summary Points

Chronic pain arising from peripheral nerve disorders is becoming more fully appreciated as a source of chronic pain.

Peripheral nerve stimulation has benefited from technological advances which allow its wider application.

There is a need for a systematic review, with inclusion of the underlying methodology supporting that review, of the high-quality literature supporting the use of peripheral nerve stimulation.

Five randomized controlled trials and four observational studies of high or moderate quality support the use of peripheral nerve stimulation.

The best evidence is for neuropathic pain.

Pain Ther (2021) 10:985–1002 https://doi.org/10.1007/s40122-021-00306-4

REVIEW

Peripheral Nerve Stimulation for Chronic Pain: A Systematic Review of Effectiveness and Safety

Standiford Helm 💿 · Nikita Shirsat · Aaron Calodney · Alaa Abd-Elsayed · David Kloth · Amol Soin · Shalini Shah · Andrea Trescot

> PERCUTANEOUS ELECTRODE IMPLANTED ON THE ULNAR NERVE IPG (LIGHTPULSE 100, NEURIMPULSE, RUBANO, (PD), Italy PARAMETERS : 0.3 TO 1 VOLT 50 Hz Pw 300 ms Lead configuration : +-++

• Chronic pelvic pain

CRIPS

• Post-stroke shoulder pain

Peripheral nerve lesions

• Phantom limb pain

Reverberi et al., 2013

Current Pain and Headache Reports (2022) 26:267–278 https://doi.org/10.1007/s11916-022-01025-x

CHRONIC DAILY HEADACHE (SJ WANG AND SP CHEN, SECTION EDITORS)

Percutaneous occipital nerve stimulation

Neuromodulation for Chronic Daily Headache

Gianluca Coppola¹ · Delphine Magis² · Francesco Casillo¹ · Gabriele Sebastianelli¹ · Chiara Abagnale¹ · Ettore Cioffi¹ · Davide Di Lenola¹ · Cherubino Di Lorenzo¹ · Mariano Serrao¹

patients	(months)	Patients with $\geq 50\%$ improvement
15	36.8	11
14	17.5	5
4	6	4
10	12	9
24	20	21
13	14.6	10
3	12	2
35	72	20
51	39.17	27
93	43.8	64
262	39.1	173 (66%)
	patients 15 14 4 10 24 13 3 35 51 93 262	patients (months) 15 36.8 14 17.5 4 6 10 12 24 20 13 14.6 3 12 35 72 51 39.17 93 43.8 262 39.1

Burns et al., Lancet 2008

TENS on FCR muscle provides inhibition of FCR motoneurons and inhibitory neurons projecting on ECR motoneurons

> А 200 175 150 FOR 125 MEPs size % 100 - -0- - ECR T1 T2 T4 **T**3 75 50 25 B 200 175 150 FCR MEPs size % 125 100 - --- - ECR T3 T4 75 50 25

Movement Disorders Vol. 21, No. 11, 2006, pp. 1908–1913 © 2006 Movement Disorder Society

> Effects of Transcutaneous Electrical Nerve Stimulation on Motor Cortex Excitability in Writer's Cramp: Neurophysiological and Clinical Correlations

Michele Tinazzi, MD,^{1,2*} Stefano Zarattini, MD,¹ Massimiliano Valeriani, MD,³ Clementina Stanzani, MD,¹ Giuseppe Moretto, MD,² Nicola Smania, MD,¹ Antonio Fiaschi, MD,¹ and Giovanni Abbruzzese, MD⁴

Before TENS	a. 38 gatte à sopre il tette d'allar à come de welc 2 BE gatte à sopre il tette l'allare à comis de mere 3. 98 gatte à sopre il tette l'allare à comis de mere 4. 19 gatte à sopre il tette l'allar à comis de mere 5. Il gatte à sopre il tette al'allar à comis de mere
After 1 session of TENS	1 32 gathe a sape il fatto l'alles è conira di unde 2. 32 gatta è sapa il tetta l'alles è conira di unde 3 32 gatta è sapa il tetta l'alles è conira di unde 4 12 gatta è sapa il tetta l'alles è conira di unde 5 231 gatta à sapa il tetta l'alles è conira di unde
After 15 sessions of TENS	2) Al gatter i sope il title, l'allers i conico di mete 2) Al gatter i sopre il title, l'allers i conico di mete 3) Al gotte i sopre il title, l'allers i conico di mete 4) all gotte i sopre il tetto, d'aller i conico di mete 5) Al gotte i sopre il tetto, l'aller i conico di mete

Contents lists available at ScienceDirect

IBRO Neuroscience Reports

journal homepage: www.sciencedirect.com/journal/IBRO-Neuroscience-Reports

Reduced H-reflex amplitude

Transcutaneous electrical nerve stimulation in the management of calf muscle spasticity in cerebral palsy: A pilot study

Delali Logosu^a, Thomas A. Tagoe^{a,*}, Patrick Adjei^{b,c}

Review

Neuromodulation of the Posterior Tibial Nerve for the Control of Urinary Incontinence

Álvaro Astasio-Picado *💿 and María García-Cano

- Posterior tibial nerve stimulation (PTNS) is effective in urinary incontinence, especially in overactive bladder (OAB)
- PTNS is extremely safety
- Session frequency is uncertain (maybe 1.3 session per month)

Knowles et al., Lancet 2015

Figure 1: Set-up for procedures (A) Percutaneous tibial nerve stimulation needle and calcaneal electrode. (B) Transcutaneous electrical nerve stimulation surface electrode placements.

Sacral neuromodulation (S3 root):

- Overactive bladder
- Pelvic floor disorders
- Non-obstructive urinary retention
- Fecal incontinence

Spinelli and Sivert, Eur Urol 2008

Take home messages:

- Peripheral neuromodulation (PN) can be useful in different neurological and non-neurological conditions
- Mechanisms of action are scarcely known
- PN may be non-invasive, but also invasive
- PN is generally safe, thus it may be added to pharmacological treatments
- There is a general methodological heterogeneity that makes metanalysis of results difficult